PENSAMIENTO
COMPUTACIONAL

Claudia De Anda Quintin
Edwin Ramén Romero Espiritu
Gibran Uriel L6pez Coronel
Rigoberto Santiago Garzén

NIVEL MEDIO SUPERIOR

b

VD

IIIIIIIII

PENSAMIENTO

Claudia De Anda Quintin
Edwin Ramén Romero Espiritu
Gibran Uriel L6pez Coronel
Rigoberto Santiago Garzén

o
o
o
w
o
>
n
0
(a]
w
=
-
w
2
4

Dr. Jesius Maduefa Molina Director Editorial y Produccion:
Rector Gustavo Gonzalez Gallina
Dra. Nidia Yuniba Brun Corona Director Administrativo:
Secretaria General Irma Vega Dofez
Dra. Elizabeth Castillo Cabrera Disefio y diagramacién:
Secretaria de Administracion y Finanzas Departamento de Arte y disefio GYROS
M.C. Sergio Mario Arredondo Salas Foto de portada:
Secretario Académico Universitario Shutterstock
M.C. Marisol Mendoza Flores Pensamiento Computacional
Directora General de Escuelas Preparatorias Primera edicién 2026
Dr. Damian Enrique Rendén Toledo © D. R. GYROS Editorial, S. A. de C. V. 2026
Secretario Académico de la DGEP Isabel la Catdlica No. 642
i Colonia Roma, Monterrey, N. L.
Dra. Pamela Herrera Rios Tel. (81) 3369 0967 — 3369 0944

Secretaria Administrativa de la DGEP

© D.R. Universidad Autonoma de Sinaloa, 2025
Direccion General de Escuelas Preparatorias,
Circuito interior S/N Ciudad Universitaria, C.P. 80010
Culiacén de Rosales, Sinaloa.

Titulo de la obra: Pensamiento Computacional
Primera edicién 2026

© D. R. Universidad Autdonoma de Sinaloa
Claudia De Anda Quintin

Edwin Ramén Romero Espiritu

Gibran Uriel Lépez Coronel

Mariela Lilidn Garcia Ramos

Rigoberto Santiago Garzén ISBN: 978-970-96930-4-1

Ni la totalidad, ni parte de esta publicacion pueden reproducirse, registrarse, almacenarse, utilizarse o transmitirse, por un
sistema de recuperacion de informacién, en ninguna forma, ni por ningin medio, sea electrénico, mecanico, fotoquimico,
magnético o electrodptico, por fotocopia, grabacion, escaneo, digitalizacién, grabacion en audio, distribucién en internet,
distribucion en redes de informaciéon o almacenamiento y recopilaciéon en sistemas de informacion sin el consentimiento por
escrito de los propietarios de los derechos.

Impreso en Monterrey, México
Impresién 2026

Presentacion

El libro Pensamiento computacional se construyé de acuerdo con los lineamien-
tos didactico-pedagdgicos del Programa de estudios de la unidad de aprendizaje
curricular del mismo nombre del Plan de estudios Bachillerato UAS 2024, emitido
por la Direccion General de Escuelas Preparatorias de la Universidad Auténoma
de Sinaloa.

El Programa de estudios en mencién, se orienta con los enfoques humanista y
constructivista del Modelo educativo UAS 2022 y con los lineamientos de la Nueva
Escuela Mexicana, que buscan la construccién de una sociedad con fundamento
en el humanismo y en la ciencia; ademas de orientarte hacia el desempefio idéneo
en los diversos contextos culturales y sociales, hacerte protagonista de tu propio
proceso de aprendizaje partiendo del desarrollo y fortalecimiento de tus habili-
dades cognoscitivas y metacognitivas e incorporarte a la Educacién Superior o al
mundo laboral. Asimismo, se enfatizan las estrategias didacticas oportunas para
que adquieras conocimientos y experiencias acordes a las exigencias presentes y
futuras, derivadas de los rapidos cambios tecnolégicos que transforman a la socie-
dad, haciendo imprescindible dotarte, en la medida de lo posible, de habilidades
tecnoldgicas y de la utilizacion de herramientas digitales, que te faciliten el acceso
y el anélisis de informacién, y que te permiten comunicar, divulgar, socializar, mo-
delar, crear, simular, manipular, interactuar e investigar.

En ese sentido, los principios pedagdgicos de los contenidos del presente titulo
se alinean con un enfoque educativo colaborativo, adaptable a las realidades y
contextos, ademas promueven un aprendizaje activo y reflexivo planteado a través
de metodologias activas y participativas, basabas en la indagacion y el descubri-
miento de conocimientos en pro de que desarrolles capacidades analiticas, criticas
y reflexivas.

Los contenidos de la obra se disefian bajo un modelo que desarrollaras progre-
sivamente y te guiaran al logro de las metas, de manera que el desarrollo de tus
habilidades y la construccion de tu aprendizaje se plantean trabajarlas en cinco
progresiones, a través de las cuales identificaras e implementaras las fases del pen-
samiento computacional resolviendo problemas cotidianos y académicos median-
te la construccién de algoritmos en un entorno de desarrollo integrado y el lengua-
je de programacion estructurada C++, utilizando estructuras decisivas e iterativas
para automatizar procesos, manipular conjuntos de datos, validar la solucién de
manera digital y determinar la ejecucién de instrucciones de manera organizada
y eficiente. Ademas, simularas sistemas robéticos mediante aplicaciones gréficas
y la programacién en Arduino con funciones elementales, control de salidas y el
uso de sensores y actuadores para resolver problemas simples de automatizacion.
Para cumplir con estos propositos académicos no bastara el conocimiento y la
comprensién de los conceptos expuestos en esta obra, sino también en que re-
suelvas actividades que te llevaran a la reflexion y autoanalisis, para que examines
tu propio proceso de aprendizaje, revises tus fortalezas y debilidades vividas du-
rante el proceso de aprendizaje y asi transformar y mejorar tu vida y el entorno
social, econémico y profesional en el que te desarrollas.

Presentacion

Agradecimientos

Agradecimientos

Nuestro sincero reconocimiento a los docentes integrantes del cuerpo colegiado
de la disciplina de Informética de la Direccion General de Escuelas Preparatorias
de la Universidad Auténoma de Sinaloa, quienes colaboraron en la elaboracion de
recursos didacticos para este libro de texto.

Gracias, colegas por compartir con la comunidad educativa y con cada generacion
de estudiantes del Bachillerato universitario, sus conocimientos, creatividad y ex-
periencia, plasmados en este recurso didactico.

Angel Sanchez Diaz

Eduin Alejandro Laveaga Corrales
Eva Angelina Martinez Campana
Francisco Eduardo Aispuro Garcia
Frida Bibiana Nonthe Ortiz
Gabriela Avendano Sainz

Jesus Alfredo Ramirez Avina
JesUs Gonzélez Aldaz

Jesus Ignacio Hernandez Garcia
Jesus Miguel Almeida Mufioz
Luis Alfredo Ramirez Avifia
Mariela Lilian Garcia Ramos
Nadya Rocio Galaviz Heredia
Oscar Urias Fierro

Raquel Villa Nufiez

Rosario Garnica Nufiez

Sabby Carolina Herndndez Garate

Presentacion
Agradecimientos
Tu Libro

Progresion 1. Bases del pensamiento computacional

1.1 Inicios de la algoritmia
1.1.1 Origenes del pensamiento computacional

1.2 Fases del pensamiento computacional
1.2.1 Identificacién del problema
1.2.2 Descomposicion del problema
1.2.3 Reconocimiento de patrones
1.2.4 Abstraccion
1.2.5 Disefio de algoritmo
1.2.6 Implementacion
1.2.7 Evaluacion

Concretando mis conocimientos

Progresién 2. Algoritmia en IDE

2.7 Aplicacién en entorno de desarrollo integrado

2.1.1 Interfaz

2.1.2 Componentes del pseudolenguaje
2.1.2.1 Variables
2.1.2.2 Constantes
2.1.2.3 Tipos de datos
2.1.2.4 Operadores
2.1.2.5 Acciones primitivas secuenciales

2.2 Estructuras de control

2.2.1 Estructura Secuencial

2.2.2 Estructuras Condicionales
2.2.2.1 Simple
2.2.2.2 Doble
2.2.2.3 Anidada
2.2.2.4 Segun...Hacer

2.2.3 Estructuras Repetitivas
2.2.3.1 Mientras...Hacer
2.2.3.2 Repetir...Hasta Que
2.2.3.3 Para...Hasta...Con Paso

Concretando mis conocimientos
Valorando mi aprendizaje
Autoevaluacion y Coevaluacion

Progresion 3. Programacién estructurada en C++: Estructuras de control

3.1 Lenguajes de programacion
3.1.1 Historia de los lenguajes de programacién
3.1.2 Clasificaciéon de los lenguajes
3.1.3 Editores de cédigo

3.2 Estructura basica de un programa en C++
3.2.1 Programacion estructurada
3.2.2 Lenguaje C++

Ul

10

12
12

14
15
16
18
20
22
25
26

28

30

32
32
33
34
34
34
35
36

37
37
38
39
40
42
45
47
47
49
51

54
56
57

58

60
60
62
63

66
66
67

3.2.3 Sintaxis y elementos basicos 67

3.2.4 Variables y tipo de datos 68
3.2.5 Entraday salida de datos 69
3.2.6 Operadores en C++ 70
3.3 Estructuras de control 71
3.3.1 Estructuras Condicionales 72
3.3.1.1 If 72
3.3.1.2 If-else 72
3.3.1.3 If-else if 73
3.3.1.4 Switch-case 75
3.3.2 Estructuras Repetitivas 76
3.3.2.1 For 76
3.3.2.2 While 77
3.3.2.3 Do while 78
Concretando mis conocimientos 79
Progresién 4. Programacién estructurada en C++ 80
4.1 Estructuras de datos 82
4.1.1 Arreglos unidimensionales 83
4.1.1.1 Declaracién 83
4.1.1.2 Insercién de datos 85
4.1.1.3 Acceso 86
4.1.1.4 Operaciones 88
Concretando mis conocimientos 95
Valorando mi aprendizaje 97
Autoevaluacién y Coevaluacion 98
Progresion 5. Robética educativa 100
5.7 Introduccién a la roboética 102
5.1.1 Historia 102
5.1.2 Conceptos basicos de electricidad y electrénica 104
5.1.3 Aplicaciones 107
5.2 Aplicacion Tinkercad 109
5.2.1 Interfaz gréfica 109
5.2.2 Componentes basicos 111
5.2.3 Componentes de entrada 112
5.3 Plataforma Arduino 115
5.3.1 Conceptos basicos 115
5.3.2 Programacién bésica en Arduino 117
5.4 Sensores y actuadores 119
5.4.1 Sensores 119
5.4.2 Actuadores 122
5.4.3 Integracion de sensores y actuadores 125
Concretando mis conocimientos 126
Valorando mi aprendizaje 127
Autoevaluacion y Coevaluaciéon 128
Bibliografia 130

Conoce tu Libro

El libro Pensamiento computacional, ha sido disefiado como recurso didactico para la asignatura del mismo nombre, la cual esta
inserta en el cuarto semestre del mapa curricular del Plan Bachillerato UAS 2024 de la Universidad Auténoma de Sinaloa.

La obra esta conformada por cinco secuencias didacticas que progresivamente abordaran los temas ayudandote en la integracién
de saberes y el desarrollo de tus habilidades. Cada una de ellas esta constituida por contenidos y diferentes tipos de actividades de
aprendizaje, dispuestas para que adquieras y apliques tus conocimientos; asimismo evidencies el desempefio y el nivel de logro de
las metas enmarcadas en los aprendizajes de trayectoria del programa de estudios de la asignatura.

Los componentes del libro son:

» Entrada de la secuencia

En esta seccion se presenta la progresién de aprendizaje que
serd abordada en la secuencia y las metas a lograr en el trayecto.

Recuperando lo que sabemos. Es un cuestionario de evalua-
cién diagndstica que debes responder antes de abordar cada
progresion de aprendizaje, es Util para que recuperes tus sabe-
res y reconozcas tus fortalezas acerca de los temas que estudia-
rés en cada secuencia. Este tipo de actividad no representa una
valoracién numérica en tu evaluacion.

» Secuencia por progresion

—® Reactivando mis conocimientos. Al inicio de cada secuencia
didactica de las progresiones, se presenta una situacién o pro-
blematica con preguntas que te guiaran a relacionar tus conoci-
mientos previos con los temas a estudiar.

—® Desarrollo del tema. Es el apartado que contiene el discurso
escrito de los temas y las actividades que te ayudaran a traba-
jar de manera individual y colaborativa en el desarrollo de tus
habilidades y a poner en practica tus saberes. En el desarrollo
se incluyen secciones y capsulas que te permitiran descubrir tus

actitudes y manifestarlas en la evaluacion.

» Tipos de actividades

———— L@ Estudiando. En algunas ocasiones va a ser necesario que reali-
ces actividades fuera de clase, que te ayudaran a prepararte para
el tema que se abordara o que refuerces lo practicado. Es muy
importante que atiendas las indicaciones y realices las tareas.

—® Ejercitando mis conocimientos. Este tipo de actividades refie-
ren a practicas a desarrollarse durante las clases, en el centro de
cémputo con la guia del profesor. Su ponderacion representa un
alto porcentaje en tu evaluacion.

~—® Concretando mis conocimientos. Son actividades de aprendizaje
interrelacionadas y orientadas para que las trabajes de manera
auténoma. Estan disefiadas para que realices procedimientos
que te encaminan a evidenciar el nivel de logro de las metas

Tu Libro

propuestas en cada progresién. Al finalizar cada progresién encontraras una actividad
de este tipo. También tienen asignado un alto valor en la evaluacién, por lo que es im-
portante atender la retroalimentacién que te haga el profesor, mejores la evidencia de
acuerdo con las observaciones hechas y reenvies para su revaloracién.

— Actividades alternativas. A |o largo del curso, en tres momentos distintos, encontraras

estas actividades que son complementarias o de recuperacion, en su mayoria son pro-
puestas que derivan de la retroalimentacién. En el caso que tengas interés de mejorar
tu evaluacién, puedes solicitar al profesor que te indique en qué momento realizarlas.

» Valorando mi aprendizaje

—@ Reflexionando lo que aprendi. Como parte de la evaluacién metacognitiva, en tres

momentos del curso, se te solicitard respondas algunas preguntas que implica re-

flexiones acerca de tu propio proceso de aprendizaje, para concretar los conocimien-

tos y seas consciente de ello. No representan una valoracién en tu evaluacién final,
¢ por lo que puedes responderlas lo mas sincero posible.

Autoevaluacién. En el apartado de Valorando lo que aprendi, encontraras instrumentos
que te ayudaran a medir tu nivel de dominio de los aspectos de aprendizaje de las metas.
Son Utiles para ayudarte a regular tu aprendizaje, te indicardn cuéles ajustes necesitas
hacer para reforzar lo aprendido.

é

Coevaluacién. La evaluacion entre pares ayuda en el proceso de aprendizaje cola-

borativo, por lo que en este libro se integran instrumentos para que evalles el des-
empefio general de tu equipo de trabajo durante el desarrollo de las actividades de
aprendizaje colaborativas.

» Capsulas

YH 9@

Conceptos clave. Son empleadas para definir conceptos que es importante
domines para comprender los temas.

Relaciénalo con.... Describe informacién més profunda del tema para que
establezcas su vinculo con otras unidades de aprendizaje curricular, con tu
vida cotidiana o tu comunidad.

Para saber mas. Con estas cépsulas se accede a videotutoriales, presen-
taciones interactivas, infografias, entre otros, para ampliar alguna explicacion
del tema en cuestién.

¢Sabias qué...? Son capsulas con informacién adicional, interesante o
datos curiosos que actualizaran tu aprendizaje en torno a las herramientas
digitales.

Recurso digital. Se incluyen en algunas secciones del libro y estan referidos
a recursos didacticos como formatos y plantillas con indicaciones o
cuestionarios interactivos, Utiles para que evidencies tu aprendizaje.

° s

Bases del Pensamiento
Computacionadl

£
o
(]
o
1 S
o
)
1 3
[

Identifica qué es el pensamiento computacional y lo aplica en la representacién de soluciones a problemas cotidianos
mediante algoritmos basicos (pseudocddigo, diagramas de flujo), considerando su contexto y recursos disponibles.

Tiempo estimado: 9 horas
Tus metas seran:
e |dentificar los principios del pensamiento computacional, su descomposicién, abstraccién y patrones para disefiar,

implementar y evaluar algoritmos de problemas de su vida cotidiana.

* Representar la solucién de problemas mediante pensamiento algoritmico seleccionando métodos, diagramas o
técnicas.

* Aplicar lenguaje algoritmico utilizando medios digitales para resolver situaciones o problemas del contexto.

Recuperando lo que sabemos

Este cuestionario es de recuperacién de conocimientos previos, es util para identificar tus saberes y habilidades y como
los relacionas con la realidad, ademas te ayudara a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar como entiendes o aplicarias cada situacion, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio. .

1. En tus propias palabras ;qué significa pensar como una computadora? ;crees que las personas pueden hacerlo?

2. jHas usado alguna vez programas o plataformas donde tengas que dar instrucciones? Describe tu experiencia.

3. ;Por qué crees que es importante aprender a resolver problemas de manera ordenada o légica, incluso sin usar una
computadora?

4. Imagina que tuvieras que crear un robot o aplicacién para ayudar en tu escuela o comunidad ;Qué problema te gustaria
que resolviera y como te imaginas que lo haria?

n a

Progresion 1

Reactivando mis conocimientos

El pensamiento computacional es un término que no sélo aplica a computadoras, sino también a la vida real. Aplicarlo implica
descomponer problemas complejos en partes mas pequefias y manejables. Es como desmontar un rompecabezas para
comprender cémo encajan las piezas, esta habilidad permite abordar cualquier problema de una manera estructurada y légica.

Analiza la serie de las cinco imagenes que siguen tres patrones independientes y recurrentes:

1. Trata de responder las siguientes preguntas:

e ;Cual es el problema central?
* ;Qué tareas lo componen?
* ;Qué patrones o repeticiones identificas?

2. Identifica la regla de cada uno de los tres patrones.
3. Describe y dibuja las caracteristicas exactas de la imagen nimero 6 siguiendo con el patrén.
4. Compartan su respuesta, para que el profesor vincule el proceso con las fases del pensamiento computacional:

a. Identificar — entender el problema

b. Descomponer - dividirlo

c. Reconocer patrones - encontrar regularidades
d. Abstraer — quedarse con lo esencial

Progresion 1

1.1 Inicios de la algoritmia

Relaciénalo con... @

Estudios y revisiones han sefialado
que el Pensamiento computacional
mejora la capacidad de resolucién
de problemas cuando se integra de
forma articulada en educacién pri-
maria y secundaria. En México, la
SEP ha comenzado a integrarlo en
educacion basica y media superior
para promover habilidades como el
razonamiento légico, la creatividad,
la toma de decisiones y el trabajo
colaborativo, desafios del siglo XXI.

En estos tiempos, donde la tecnologia transforma cada aspecto de nuestras vidas,
el pensamiento computacional se ha convertido en una competencia esencial para
cualquier persona que enfrenta problemas complejos en su vida diaria o profesio-
nal. Esta habilidad permite a los estudiantes abordar cualquier problema complejo
de manera légica, estructurada y eficiente, utilizando herramientas propias de la
informatica, pero aplicables a cualquier disciplina.

Contrario a lo que se puede creer el pensamiento computacional no se limita a la
programacion, es una forma de pensar que implica descomponer problemas, reco-
nocer regularidades, abstraer lo esencial y formular pasos claros, es decir, algorit-
mos que conduzcan a soluciones repetibles y verificables. Formalmente se puede
decir que el Pensamiento computacional es un conjunto de procesos cognitivos
y estrategias para formular, analizar y resolver problemas de manera que puedan
ser resueltos por una persona, una computadora o una combinaciéon de ambos.

Origenes del pensamiento computacional

La columna vertebral del pensamiento computacional es el algoritmo, término que
asociamos con la informatica y que ha sido una practica milenaria usada para des-
cribir pasos al resolver problemas.

Un algoritmo es un conjunto finito y ordenado de instrucciones, pasos o reglas
bien definidas, que permite solucionar un problema. Sus caracteristicas clave son:

i | onenio | rure | oetie | coneme

Con pasos
planteados de | Secuencia

forma objetiva | debe ser clara
y precisa.

Tener un Con mismos
nimero deter- | datos produ-
minado de cir el mismo

pasos. resultado.

Ofrecer una
soluciéon espe-
y sin ambi- cifica.

guedades.

La algoritmia o el arte de disefiar algoritmos ha acompafiado a la humanidad desde
que se empezd a sistematizar la resolucion de problemas. Se tiene a los babilonios
y los Sumerios, quienes desde el afio 3000 a,C. utilizaban técnicas algoritmicas

para realizar célculos en tablillas de arcilla, como multiplicaciones o la estimacién
de raices cuadradas. En la antigua Grecia el matematico Euclides describio el fa-
moso Algoritmo de Euclides, un procedimiento para encontrar el Maximo Comun
Divisor (MCD) de dos niimeros.

El salto a la Era de la computacién

En el siglo XX se dio la formalizacién de algoritmos y en el siglo XXI los expertos
en educacion propusieron ensefiar el pensamiento computacional desde edades
tempranas, considerandola una habilidad tan fundamental como leer y escribir.
Hoy dia se exploran formas de integrarlo con otras disciplinas bajo el enfoque
STEAM (Ciencia, Tecnologia, Ingenieria, Arte y Matematicas).

El concepto de la algoritmia se fusiond con la informética gracias a piones visio-
narios como:

» Ada Lovelace, quien es considerada la primera programadora de la historia al
trabajar con la Maquina Analitica de Charles Babbage, en 1842 escribié lo que hoy
se conoce como el primer algoritmo informatico, disefiado para que la maquina
calculara la secuencia de nimeros de Bernoulli.

» George Boole desarrollé el Algebra de Boole o Algebra Booleana, un sistema
que describe el pensamiento légico usando solos dos valores: verdadero vy falso
(0/1). Este es el fundamento logico de toda la programacion y la codificacion di-
gital actual.

» Alan Turing, en 1936 formalizé el concepto tedrico de algoritmo con su modelo
de la Maquina de Turing, una abstraccion matemética de una computadora que
puede ejecutar cualquier algoritmo. Durante la Segunda Guerra Mundial con su
trabajo se descifraron cédigos, esto fue clave en descomposicién de problemas y
el disefio algoritmico.

» John Von Neumann propuso la Arquitectura Von Neumann en el 1945. Este
modelo permite a las computadoras almacenar en la misma memoria tanto el pro-
grama (el algoritmo) como los datos, importante para los algoritmos ejecutables.

Desde estos cimientos, la algoritmia ha evolucionado hasta convertirse en la base
de la Inteligencia Artificial y otras aplicaciones usadas diariamente.

Relaciéon entre algoritmo y pensamiento computacional

La formalizacién del pensamiento légico y algoritmico consolidé la genealogia his-
térica y las multiples dimensiones del pensamiento computacional, con los méto-
dos computacionales, ingenierfa de software, ciencias computacionales y disefio.

De manera que el pensamiento computacional ensefia a pensar en términos
algoritmicos (estructura, repeticién, condiciones, modularidad), pero también en
capacidades previas como formular el problema y evaluar resultados. Asi pues el
disefio del algoritmo es una de las practicas centrales del pensamiento computa-
cional, dado que implica traducir una solucién conceptual a pasos claros, verifica-
bles y si es posible, ejecutables por una computadora.

Para saber mas... @

Accede al video Inicios de la algorit-
mia, para ampliar la explicacion del
tema. Hazlo escaneando el Cédigo
QR.

¢Sabias qué...? m

Existen algoritmos que imitan pro-
cesos naturales como Algoritmos
genéticos, basados en la evolucion
biolégica; Colonia de hormigas,
para encontrar rutas 6ptimas; Algo-
ritmos de enjambre de particulas,
inspirados en el comportamiento de
aves o peces. Todos estos se usan en
inteligencia artificial, robética y opti-
mizacion.

Progresion 1

1.2 Fases del pensamiento computacional

Relaciénalo con... {é’}

La Segunda Guerra Mundial fue un
punto de inflexiéon para la compu-
taciéon moderna, Turing y su equipo
en Bletchley Park desarrollaron téc-
nicas computacionales avanzadas
para descifrar mensajes cifrados, un
proceso que implicaba descomposi-
cién de problemas, reconocimiento
de patrones y disefio de algoritmos;
todas fases del pensamiento compu-
tacional.

Recurso digital \
A

Escanea el QR para acceder a la in-
fograffa Estrategias de comprension
lectora.

Entender mejor el mundo digital que nos rodea, por ejemplo cémo funcionan las
redes sociales, como se procesan los datos personales o por qué cada aplicacion
actlia de cierta manera ayuda a tomar decisiones informadas y seguras, ademas, la
sociedad demanda adaptabilidad a los constantes cambios de las formas de pro-
ducir e interactuar. Ante este contexto dindmico, el pensamiento computacional
provee herramientas cognitivas que ayuden a analizar contextos de forma inmedia-
ta, evaluar diferentes escenarios y tomar decisiones informadas para automatizar
procesos repetitivos.

El pensamiento computacional no es un paso Unico, sino un proceso ciclico y es-
tructurado que consta de varias etapas interconectadas que facilitan la resolucion
de problemas:

Identificacion del problema
Descomposicion
Reconocimiento de patrones
Abstraccion

Diseiio de algoritmo
Implementacién

Evaluacion

Estas fases no son lineales, sino que forman un ciclo constante donde la evaluacion
y el refinamiento pueden llevar a reajustar la descomposicién, la abstraccion o el
disefio del algoritmo.

Estudiando

Dedica un tiempo a la lectura de las paginas correspondientes a los temas de
Fases del pensamiento computacional. Realizar esta tarea, te facilitara el apren-
dizaje y realizar las actividades que el profesor guiara en las siguientes sesiones.

Apdyate en alguna estrategia de lectura que te ayude a mejorar la comprension
lectora. Con el recurso digital de al lado puedes conocer algunas.

Identificacion del problema

Esta primera fase es crucial, conlleva formular de la manera més precisa posible
para que las herramientas de tecnologia puedan ayudar a encontrar la solucién.

Por tanto, antes de buscar una solucién es imprescindible comprender los requisi-
tos, las limitaciones y los objetivos del problema en cuestién, entender el desafio a
descifrar. Una buena identificacién separa hechos de supuestos y enuncia criterios
de éxito medibles.

Componentes de la fase de identificacién

> Analisis del problema. Se examina el problema en profundidad para entender
todos sus aspectos. Esto implica identificar las necesidades, restricciones y objeti-
vos que debe cumplir la solucién.

> Definicion de los elementos. Se especifican claramente los componentes del
problema, incluyendo:

> Estado inicial, es decir, la situacion de partida o los datos de entrada disponibles.

> Estado objetivo, que refiere a la solucién deseada o resultado final que se
espera.

» Condiciones y restricciones, donde cualquier limitacién o regla debe ser res-
petada por la solucion.

> Determinacion de la naturaleza computacional. Se evalia si el problema
puede ser resuelto paso a paso por una computadora. Algunos problemas pueden
ser de decision, con respuestas de si o no, o bien de optimizacién, donde se busca
la mejor solucién.

Ejemplo de la fase de identificacién de un problema
Considérese el problema de “encontrar la ruta mas rapida para llegar a un destino”.

1. Analisis del problema: un individuo necesita una forma eficiente de planificar
un viaje. El problema no es solo llegar, sino hacerlo en el menor tiempo posible,
evitando el trafico o los retrasos.

2. Definicién de los elementos:
a. Estado inicial: |a ubicacién actual de la persona.
b. Estado objetivo: |a direccién del destino final.
c. Condiciones y restricciones: la ruta debe considerar datos en tiempo
real como el tréfico, la velocidad de las carreteras, posibles desvios y el
tipo de transporte.

3. Identificacién de la naturaleza computacional: este es un problema ideal para
una solucién computacional, ya que se puede representar como un grafo con no-
dos (ubicaciones) y aristas (carreteras), y se puede usar un algoritmo para encontrar
el camino mas corto.

¢Sabias qué...? m

En el mundo del emprendimiento y
la tecnologia, la fase de identifica-
cién no se llama simplemente “en-
contrar un problema”, sino “definir
una oportunidad de mercado”. Los
innovadores mas exitosos no inven-
tan cosas nuevas; simplemente iden-
tifican una fricciéon o un dolor que
tiene la gente y luego usan el pen-
samiento computacional para crear
una solucién eficiente.

Progresion 1

Recurso digital ﬁ

Escanea el QR para descargar el ar-
chivo del problema Piso gamer del
salon de baile.

La fase de identificacion es tan critica que se compara a menudo con la Abstrac-
cion (cuarto pilar del pensamiento computacional), pero es necesario ignorar los
sintomas para concentrarse en la causa de la raiz del problema. Por ejemplo, si
un estudiante dice: mi problema es que no tengo suficiente tiempo para estudiar;
la solucién obvia serfa que programara un horario de estudio, pero esta solucién
podria fallar, porque el verdadero problema podria ser: me distraigo facilmente y
no priorizo tareas. De ahf que la identificacién incorrecta de un problema es la prin-
cipal razén por que proyectos tecnolégicos complejos y muy costosos fracasan.
Los programadores resuelven perfectamente lo que se les pide, pero si la peticién
original no abordaba la verdadera necesidad, el resultado final es indtil.

Por tanto, no identificar el problema correcto es programar una solucién equivocada.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza la siguiente actividad:
Preguntas de identificacién del problema.

1. Descarga el archivo del problema Piso gamer del salén de baile escaneando el
cédigo QR de al lado.

2. Analiza el problema y responde las siguientes preguntas que ayudan a la iden-
tificacion del problema:

a. ;Cudl es el objetivo del problema?

b. ;Qué datos conoces desde el inicio?

c. ;Qué informacién falta por descubrir?

d. ;Cudl seré el resultado que se quiere obtener?

3. Guarda tus respuestas en un documento de Word usando en el nombre tus
iniciales seguidas de _PC_P1_EO1.

4. Hazlo llegar a tu profesor por el medio que acuerden para que evalle tus
respuestas.

Descomposicion del problema

Una vez que se ha completado la fase de identificacién se procede a la siguien-
te etapa, la descomposicion, que consiste en dividir el problema complejo o un
sistema grande en partes mas pequefias, manejables e independientes, es decir,
en subproblemas o médulos mas sencillos de resolver de forma individual. En una
situacion sencilla como hornear un pastel, los subproblemas son preparar la masa,
hornear y decorar.

0 PENSAMIENTO COMPUTACIONAL

Se puede decir que identificar el problema es el paso inicial para la descomposicion.

Se recomienda llevar a cabo esta fase plantedndose preguntas como:

* ;Qué subproblemas o tareas lo componen?
e ;Qué se necesita para resolver cada uno de ellos?

Ejemplo de la fase de descomposicion de un problema
A la gente le cuesta mucho encontrar un taxi libre en la calle.

Descomposicion:
* Subproblema 1:
¢Coémo saber dénde estan los taxis? requiere GPS.

* Subproblema 2:
¢ Cémo comunicar al conductor que necesito uno? requiere una app de solicitud.

* Subproblema 3:
¢Cémo pagar de forma segura? requiere un sistema de pagos integrado.

El Resultado:

Servicios como Uber o DiDi que nacen de la correcta identificacion y descom-
posicion de la frustracién de buscar un taxi, convirtiéndolo en un algoritmo de
conexion eficiente.

Ejercitando mis conocimientos

Para reforzar tu aprendizaje realiza de manera individual y con la guia de tu profe-
sor la siguiente actividad:

Tabla de descomposicién de problemas.
1. Aplica la fase Descomposicién al problema Piso gamer del salon de baile.
2. Abre el documento de Word de Identificacién del problema de la actividad

anterior e inserta una tabla con el siguiente formato y responde en las celdas las
respuestas necesarias a cada pregunta.

Subproblema Descripcion ¢Qué se necesita Posible resultado
para resolverlo?

3. Guarda el archivo usando en el nombre tus iniciales seguidas de _PC_P1_E02 y
compartela con tu profesor por el medio que acuerden.

Progresion 1

¢Sabias qué...? -

La necesidad de descomponer pro-
blemas complejos se popularizé du-
rante la Segunda Guerra Mundial, no
en la programacién, sino en la inge-
nieria de sistemas. Proyectos enor-
mes como el disefio de submarinos
eran imposibles de manejar por una
sola persona o un solo equipo. Los
ingenieros dividieron el proyecto en
sistemas mas pequefios e interco-
nectados. Esto dio origen al concep-
to de “modularidad” demostrando
que cualquier meta gigante, desde
construir un cohete hasta disefiar
una app, solo se logra si se divide en
médulos que funcionan de manera
independiente pero arménica.

Progresion 1

¢Sabias qué...? @

El sistema de las redes sociales ana-
liza patrones de comportamiento de
millones de usuarios simultdneamen-
te. Si el 80% de las personas que vie-
ron el video A también interactuaron
con el video B, hay un patrén. Asi
que cuando una cancién se vuelve
viral en plataformas como TikTok o
un video es tendencia en YouTube,
no es casualidad. El corazén de estas
plataformas es un algoritmo de reco-
nocimiento de patrones que predice
tus proximos deseos.

Reconocimiento de patrones

Es un paso clave para pasar de la comprension del problema a la creacién de una
solucion automatizada y generalizable.

El reconocimiento de patrones se hace identificando tendencias, estructuras,
conexiones, semejanzas o regularidades entre las partes, esto es, en los datos o
problemas, para resolverlos de manera mas eficiente. Su importancia radica en
que permite reutilizar soluciones pasadas o aplicar una técnica probada a varios
subproblemas y no tener que reinventar la rueda cada vez que se enfrentan a una
nueva situacion. Lo que representa un enorme ahorro de tiempo y esfuerzo.

Al encontrar patrones, se pueden simplificar problemas complejos, crear soluciones
repetibles y generalizar la resolucion de problemas similares, por ejemplo, reconocer
que todos los gatos tienen cola, ojos y pelaje permite dibujar un gato basico y luego
afiadir detalles especificos, en lugar de tener que definir cada gato desde cero.

El reconocimiento de patrones puede hacerse con esta guia:

1. Identificacién de similitudes: usando la habilidad de ver lo que es igual o repe-
titivo en diferentes situaciones.

2. Simplificacion de problemas: identificando patrones entre los problemas pe-
quenos en los que se ha descompuesto uno complejo, lo que facilita su compren-
sion y resolucion.

3. Resolucién eficiente: creando soluciones repetibles para problemas similares,
como usar un bucle para repetir una acciéon en programacion en lugar de escribir

el mismo codigo una y otra vez.

4. Generalizacién: haciendo predicciones y generalizando soluciones a partir de
un conjunto de datos.

Ejemplo de la fase de reconocimiento de patrones

El docente escribe en el pizarrén las siguientes secuencias:

1. 2,4,8,16,32, ...
2. 1,1,2,3,58,13, ...
3. A C FJ O, ..

Los estudiantes deben encontrar la regla o patrén que explica cdmo se genera
cada secuencia.

Preguntas guia:
Discuten cémo reconocer una regularidad para predecir el siguiente valor y gene-
rar un algoritmo. Se apoyan respondiendo:

e ;Qué relacién hay entre un nimero (o letra) y el siguiente?
* iSe repite algun tipo de operacién o salto?
* ;Podria expresarse el patréon con una férmula o con instrucciones?

Reconocimiento de patrones:
x2, suma de los dos anteriores y aumento progresivo de posiciones en el alfabeto.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza la Tabla de reconocimien-
to de patrones:

1. Retoma el problema de Piso gamer del salén de baile.

2. Con base en la tabla de descomposicion del problema, enfécate en encontrar
patrones basate en las siguientes preguntas:

a. ;Hay simetria?
b. ;Las diagonales siguen un mismo patrén?
c. ;El disefio se repite igual si giras el cuadrado?

3. Encuentra los patrones que tiene el disefio del piso, por ejemplo puedes dividir
el piso en cuatro partes o comparar lo que observas en cada una.

4. Inserta en el archivo una tabla con las siguientes columnas y rellénala con la
informacién que observes en los patrones:

a. Partes comparadas
b. Similitudes

c. Diferencias

d. Posible patron

5. Guarda el archivo usando en el nombre tus iniciales seguidas de _PC_P1_E03 y
compartela con tu profesor para que la evalte.

Progresion 1

Relaciénalo con... {@}

Un error comln que los estudiantes
cometen al realizar la fase de abs-
traccién es confundir representacion
con algoritmos, pero, elegir una
buena abstraccién no es lo mismo
que implementar el algoritmo, am-
bas etapas deben aparecer por se-
parado.

Abstraccion

La Abstraccion es el proceso de seleccionar y preservar sélo la informacién rele-
vante de un problema y omitir los detalles que no afectan la solucién, es el arte
de la simplificacion, filtrar la realidad para quedarse con lo esencial. Esta seleccion
permite modelar el problema a un nivel manejable y util para disefiar un algoritmo
o sistema. Ademas, un buen modelo abstracto facilita el anlisis y generalizacién a
problemas similares, reduciendo la complejidad y guiando la implementacién. Por
el contrario, una abstraccién pobre lleva a soluciones rigidas y erréneas.

La abstraccion ha sido clave en la evolucién del pensamiento computacional y sus
aplicaciones. Es el puente entre el mundo real y su representacién computacional.

Proceso practico de la fase de abstraccién es:

1. Definir el objetivo: tener claro lo que se quiere resolver.
2. Listar los detalles del mundo real: recopilar toda la informacion disponible.

3. Preguntarse por la relevancia: determinar la informacién esencial requerida
para la soluciéon, puede ser preguntandose ; esta informacién influye en la solucion?
Omitir el ruido o los detalles que no afectan el resultado final.

4. Elegir representaciones: crear un modelo simplificado del problema, esto pue-
de ser en una lista, matriz, grafo, conjunto de atributos, etc.

5. Formalizar operaciones: definir qué acciones, consultas o herramientas se ne-
cesitan sobre la representacion.

6. Probar la abstraccién: aplicar la representacion a ejemplos concretos; verificar
si permite resolver el objetivo.

7. Iterar: ajustar la abstraccién, es decir, afiadir o quitar atributos, segun pruebas
y errores.

Ejemplo de la fase de abstraccion

Disefar una plataforma que detecte automaticamente publicaciones que anuncian
eventos escolares como talleres, torneos, conferencias, para agruparlas en un ca-
lendario.

Objetivo:
Crear un modelo que identifique si una publicacién es anuncio de evento o no lo es.

Paso 1.
Definir el objetivo: clasificar cada publicacion como “evento” o “no evento” con
precision razonable.

Paso 2.

Listar detalles: texto completo de la publicacion (oraciones, emojis, hashtags), au-
tor (perfil), fecha de publicacién, imdgenes adjuntas, enlaces externos, comenta-
rios y reacciones.

Paso 3.
Decidir relevancia:

e Conservar (probablemente sean relevantes) presencia de palabras clave como
“taller”, “conferencia”, “inscripciones”, “fecha”, “hora”, “sede”; formato con fe-
cha/hora, hashtags relacionados, enlaces a formularios de inscripcion.

e Omitir en primera version, las imagenes (porque requieren visién por compu-
tadora), tono emotivo (a menos que se use NLP avanzado), gran cantidad de co-
mentarios (ruido).

* Consideracion adicional: autor verificado puede aumentar probabilidad (atributo
opcional).

Paso 4.
Elegir representacion: representamos cada publicacion como un vector de caracte-
risticas binarias: 1= Evento, 0 = No evento

 f1: contiene palabra “taller” (0/1)

e f2: contiene palabra “inscripcion” (0/1)
e {3: contiene una fecha (0/1)

e f4: contiene hora (0/1)

e {5: contiene hashtag relacionado (0/1)
e f6: longitud de texto (nimero)

Este vector es una abstraccion: de texto largo y pocos atributos relevantes.

Paso 5.
Formalizar operaciones:

e Clasificar como evento mediante
un arbol, usando los vectores rele-
vantes etiquetados.

Paso 6.
Probar la abstraccion con los siguientes 3 ejemplos:

1. "jInscripciones abiertas para el taller de robética este viernes a las 10:00! Regis-
trate aqui: ..."

2. "Miren este meme sobre los exdmenes

3. "Concurso de fotografia — maés detalles mafana”

Se detecta un falso negativo en ejemplo 3, la abstraccién es rigida porque depen-
de de palabras clave y de la presencia explicita de fecha/hora.

Paso 7.
Iterar y mejorar la abstraccién:

Afiadir f7: contiene palabra “concurso” mejora la deteccién.

Afiadir deteccién de frases temporales: “mafana” y “este sdbado” como f8.
Considerar una puntuacién y un umbral para clasificar.

Probar con mas ejemplos y ajustar.

Conceptos clave

NPL. Procesamiento de Lenguaje
Natural (Natural Language Proces-
sing) es una rama de la IA que va
mas allé de la busqueda de palabras
clave, permite que una computadora
comprenda el significado, la inten-
cion o el tono de los textos.

Relaciénalo con... {§}

Un arbol de decision es una estruc-
tura de tipo diagrama que organiza
decisiones en ramas a partir de pre-
guntas o condiciones. Cada nodo
representa una pregunta, cada rama
una respuesta posible (Si/No) y las
hojas finales simbolizan una deci-
sion o resultado. Modelar un arbol
facilita ignorar detalles innecesarios,
ademas se identifican las caracteristi-
cas clave al transformar informacion
compleja en una estructura visual.

Progresion 1

¢Sabias qué...?

No todos los algoritmos son iguales.
Para un mismo problema, por ejem-
plo, ordenar una lista de nimeros,
pueden existir decenas de algorit-
mos. La clave es encontrar el algo-
ritmo éptimo, la cual se mide por la
eficiencia, que se divide en dos ele-
mentos: tiempo de ejecucion y uso
de memoria. Aspectos evaluados en
concursos como la Olimpiada Mexi-
cana de Informatica.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza la Tabla de abstraccién:

1. Retoma el archivo con las preguntas de identificacion y las tablas de descompo-
sicion y descubrimiento de patrones que has trabajado las tres actividades anterio-
res con el problema Piso gamer del salén de baile.

2. Revisa las respuestas que tienes en el archivo y reflexiona:

a. ;Qué partes del problema son realmente necesarias para explicar el disefio?
b. ;Qué detalles podrias eliminar sin afectar su comprensién?
c. ;Qué ideas o patrones se repiten y pueden generalizarse?

3. Inserta una tabla mas en el mismo archivo, después de la tabla de descubrimien-
to de patrones, con las siguientes columnas:

a. Elemento del disefio o dato del problema.
b. ;Es esencial?

c. Razon.

d Cémo puede representarse de forma simple.

4. Con base en las respuestas de la tabla elabora una representacién gréfica en tu
cuaderno de notas del disefio que conserve solo los elementos esenciales.

5. Escanea o toma foto con tu celular del esquema visual e insértalo debajo de la
tabla de abstraccion.

6. Guarda el archivo usando en el nombre tus iniciales sequidas de _PC_P1_E04 y
hazla llegar a tu profesor para recibir evaluacion.

Disefio de algoritmo

Una vez que se ha analizado, descompuesto y abstraido el problema, el paso final
antes de la implementacién es crear la secuencia precisa y ordenada de instruccio-
nes, es decir, el algoritmo.

Los algoritmos son la base de la programacién de computadoras, son escritos en
cédigo especial entendible por los programas de computadora llamado lenguaje
algoritmico. Este implementa una solucién tedrica a un problema indicando las
operaciones a realizar y el orden en que deben ejecutarse.

Diseiiar el algoritmo es traducir la solucion abstracta en una secuencia de pa-
sos claros, que puede ser en pseudocddigo, diagrama de flujo o instrucciones en
lenguaje natural, que lleven a la resolucién del problema. Su importancia es que
traduce la comprensién abstracta del problema en un procedimiento ejecutable.

Algunas buenas préacticas en el disefio algoritmico son:

Claridad con pasos ordenados y sin ambigtiedades.
Relaciénalo con... @

Modularidad dividir en funciones y/o subalgoritmos.
La fase de disefio es la parte del pro-

ceso que menos depende de una

computadora. Los grandes disefia-

dores de algoritmos a menudo tra-

Entradas y definir claramente qué datos entran y bajan con lapiz y papel o una pizarra.
salidas qué resultados se esperan.

Condiciones y

especificar cuando repetir o tomar decisiones.
bucles

contemplar situaciones extremas, como

Casos limite
datos faltantes o errores.

Ejemplo de diseiio de algoritmo
Encender una ldmpara solo si el interruptor estd encendido.

Entrada:
¢ Estado del interruptor: puede ser ON o OFF.

Proceso:

e Verificar el estado del interruptor.

e Siestd ON, enviar corriente a la ldmpara.

e Si esta OFF, mantener la ldmpara apagada.

Salida:
 Estado de la ldmpara, luz encendida o luz apagada.

Disefio del algoritmo:

Opcidn 1 con Pasos secuenciales en lenguaje natural:

1. Iniciar el estado del interruptor.

2. Leer el estado del interruptor.

3. Si el interruptor estd en ON, encender la lampara.

4. Si el interruptor esta en OFF, dejar la lampara apagada.
5. Termina el proceso.

Opcién 2 con diagrama de flujo:

Conceptos clave @

Lenguaje de programacién estruc-
turada. Es un tipo de lenguaje que
organiza el codigo en una estructura
|6gica y modular, usando estructuras
que controlan el flujo de la secuencia
evitando saltos desordenados.

Opcién 3 con pseudocddigo (en graphql):

Inicio
Leer interruptor
Si interruptor == ON entonces
Encender lampara
Sino
Mantener lampara apagada
Fin Si
Fin

Explicacién paso a paso:

1. Inicio (se enciende o ejecuta el sistema).

2. Leer interruptor (el programa obtiene el valor actual del interruptor) 1= ON,
0=0FF).

3. Condicion (el sistema evalla si el interruptor estad en ON).

4. Encender lampara (si la condicion se cumple, el programa activa la salida digital
que alimenta la lampara).

5. Sino (sino se cumple, la ldAmpara permanecera apagada).

6. Fin (el programa concluye, sin repetir la secuencia).

Ejercitando mis conocimientos

Después de analizar el disefio del piso y descubrir sus patrones y estructura, es
momento de convertir tus ideas en un algoritmo, es decir, una secuencia ordenada
de pasos que cualquier persona pueda seguir para obtener el resultado correcto.

De manera individual y con la ayuda de tu profesor realiza un Disefio de algoritmo
con las siguientes indicaciones:

1. Retoma el archivo generado la actividad anterior, el cual cuenta con la siguiente
informacion:

a. Preguntas de identificacion

b. Tabla de descomposicion del problema

c. Tabla de reconocimiento de patrones

d. Tabla de abstraccion del problema

2. Con base en toda la informacion redacta en el archivo un algoritmo que resuelva
de manare eficiente el problema. Este debe cumplir con las caracteristicas funda-
mentales de los algoritmos y atender las etapas de:

a. Entrada de informacion

b. Proceso de datos

c. Salida de resultados

3. Una vez terminado guarda el archivo nombréndolo con tus iniciales seguidas
de _PC_P1_EO5 y compartelo con tu profesor.

Implementacion

La implementacion es la traduccién del algoritmo disefiado a un lenguaje que
pueda ser ejecutado por una maquina. Significa pasar del algoritmo a una forma
ejecutable, programarlo en un lenguaje o simular con herramientas visuales que
permiten la automatizacién de la solucién. Esta fase es el punto donde la solucién
tedrica se convierte en un programa funcional.

A los usuarios que se inician en el campo de la algoritmia se les recomienda para
ver sus algoritmos en accién emplear lenguajes de programacion y entornos visua-
les de desarrollo sencillos como Scratch, PSelnt, Code.org, ya que ayudan a intro-
ducir conceptos sin |a sintaxis propia de un lenguaje de programacién estructurada
como se requiere en C, C++, Python, Java y Pascal, entre muchos mas.

Ejemplo de implementacién de algoritmo

Un estudiante necesita saber si aprueba o reprueba una materia en funcién de su
calificacion final.

Entrada:
e Calificacion (nimero del 0 al 10).

Proceso:

* Leer la calificacion del estudiante.

e Evaluar si es mayor o igual a 6.

* Mostrar el resultado segun corresponda.

Salida:
* Mensaje indicando si el estudiante aprueba o reprueba.

Algoritmo:

1. Iniciar el proceso.

2. Leer la calificacién del estudiante.

3. Si la calificacién es mayor o igual a 6, mostrar “Aprobado”.
4. Si la calificacién es menor que 6. Mostrar “Reprobado”.

5. Terminar el proceso.

Pseudocédigo en PSeint

1 Algoritmo Evaluar_calificacion

2 Definir calificacion Como Real

3

4 Escribir “Introduce tu calificacién (0-10): ”
5 Leer calificacion

6

7 Si calificacién > 6 Entonces

8 Escribir “El estudiante esta Aprobado. ”
9 SiNo

10 Escribir “El estudiante esta Reprobado. ”
11 FinSi

12

13 FinAlgoritmo

¢Sabias qué...? m

Aunque el lenguaje de programa-
cion Pascal es menos utilizado en
proyectos modernos, es histérica-
mente importante ya que fue dise-
fiado para ensenar los principios de
este tipo de programacion.

Relaciénalo con... @

Es conveniente que en el disefio de
algoritmo y diagramas de flujo, se
acostumbre a escribir las variables y
constantes con formato de cursivas
para identificarlas facilmente.

Progresion 1

Conceptos clave

Bugs. Es un error, fallo o defecto de
sintaxis o de l6gica dentro del cédigo.

Bucle while. Es una estructura de
control de flujo en programacion
que ejecuta repetidamente un blo-
que de cédigo mientras una condi-
cion especificada es verdadera, se
evalla la condiciéon antes de cada
iteracién y si es falsa, se termina el
ciclo.

Bucle for. Estructura de control que
se utiliza para ejecutar un bloque
de codigo un nimero determinado
de veces. Se usa cominmente para
iterar sobre colecciones de datos
como listas o arreglos.

Evaluaciéon

Esta ultima fase del pensamiento computacional, pero no menos importante, es la
validacion y mejora continua, aqui:

Se prueba > Se corrige > Se mejora

Evaluar significa medir si la solucion cumple las metas definidas en la fase Identifi-
cacion del problema. Involucra pruebas, andlisis de eficiencia, de robustez frente a
entradas no esperadas y de reflexion critica sobre la solucion y su impacto. Es decir
que revela en el codigo del programa los errores de especificacion o decisiones
practicas, de ahi que el resultado de la evaluacién sirve de retroalimentacion a la
fase de implementacion.

La evaluacion implica principalmente tres acciones:

1. Pruebas. Esto es ejecutar el programa con diferentes datos de entrada, inclu-
yendo casos limite, para verificar que se cumple con el objetivo.

2. Depuracién o Debugging. Es el proceso de identificar, analizar y corregir en el
cddigo los errores, que a su vez se llaman bugs.

3. Refinamiento. Analizar la eficiencia y claridad de la solucién. Aqui conviene ha-
cerse preguntas como ;funciona bien? ;podria ser mas rapido o consumir menos
recursos?

Durante la realizacién de las pruebas se lleva a cabo la iteracién, esto es, ejecutar
un bloque de cédigo una y otra vez. La repeticién puede terminar una vez que
se cumple una condicién especifica, por ejemplo un bucle while o cuando se ha
ejecutado un nimero de veces definido, como un bucle for. Esta actividad es parte
central del pensamiento computacional.

Es muy importante llevar a cabo la evaluacién, pues asegura la fiabilidad y eficien-
cia del algoritmo, incluso las pruebas de escritorio son muy asertivas. Las pruebas
simulan el comportamiento de un algoritmo, que se apoyan en una tabla con tan-
tas columnas como variables tenga el algoritmo y seguir las instrucciones colocan-
do los valores correspondientes.

Ejemplo de implementacién de algoritmo

Comprobar que:

1. El algoritmo recibe correctamente la entrada (calificacion).

2. La condicién légica (>=6) se evalla adecuadamente.

3. La salida corresponde al resultado esperado (Aprobado o Reprobado).
4. No hay errores l6gicos ni omision de casos limite.

Corrida de escritorio:

Condicién Salida

Resultado . s
generada por | Conclusién

el algoritmo

Entrada:

Ry calificacién
calificacién > 6 esperado

1 9.5 Verdadero Aprobado El ’estudiante Correcto
est4 aprobado

El estudiante

) orrecto
estd aprobado c

2 6 Verdadero Aprobado

El estudiante

3 5.9 Falso Reprobado esta reprobado

Correcto

4 0 Falso Reprobado El lestudlante Correcto
esté reprobado

El estudiante

) orrecto
estd aprobado ¢

5 10 Verdadero Aprobado

Anélisis de resultados:

e El algoritmo responde correctamente en todos los casos de prueba.

* Se evaluaron casos limite: 6 y 5.9, donde el comportamiento légico fue el esperado.
* No hay errores en la estructura condicional ni en la salida de texto.

* Se cumple el objetivo: determinar si el estudiante aprueba o reprueba segun su
calificacion.

El algoritmo cumple con la légica del problema, produce resultados correctos en
todos los escenarios de prueba, no requiere ajustes adicionales, por tanto, esta
listo para implementarse en un lenguaje de programacién o entorno visual.

Ejercitando mis conocimientos

Realiza la actividad de Implementacién y evaluacién.

1. Retoma el archivo de la actividad anterior del algoritmo del problema del piso
gamer salén de baile y comprueba el funcionamiento con una simulacién de escri-
torio ejecutando el algoritmo paso a paso.

2. Realiza la implementacién de tu algoritmo utilizando los datos de casos de prue-
ba de la siguiente tabla:

1 23

2 17
3 9
4 27

Para saber mas...

Accede al video Fases del pensa-
miento computacional, donde se ex-
plica la aplicacion de cada una de las
etapas con un problema especifico.
Accede a él escaneando el Cédigo
QR.

Progresion 1

3. Llena la tabla con los valores obtenidos después de probar tu algoritmo con los
valores de N de la tabla.

4. Pide a tu profesor que muestre en pizarrén su corrida y compara con tus resul-
tados.

5. Una vez terminada la verificacion, guarda el archivo usando en el nombre tus
iniciales seguidas de _PC_P1_E06 y compartelo con tu profesor.

Concretando mis conocimientos

Es momento de demostrar tu aprendizaje de las Fases del pensamiento computa-
cional, para ellos de manera individual realiza la actividad y aplicar cada una de las
etapas:

El propietario del Pixel Market, una tienda de videojuegos retro quiere digitalizar su
sistema de caja.

Demuestra que eres un excelente programador y ayidale a disefiar un algoritmo
secuencial que le permita descomponer cualquier cantidad de dinero en monedas
de distintas denominaciones: 500, 200, 100, 50, 25, 10, 5y 1 pesos.

1. Crea un documento en Word para colocar el texto del problema y las tablas nece-
sarias para aplicar las fases antes mencionadas.

a. Aplica la fase de identificacion y descomposicion del problema.

b. Observa que sucede y reconoce los patrones del problema.

c. Realiza la abstraccién, conservado Unicamente lo esencial del problema.
d. Disefa el algoritmo adecuado para resolver el reto.

e. Implementa y evalla los resultados con la siguiente tabla de ejemplos:

hay O moneda(s) de 500
hay 1 moneda(s) de 200
hay 1 moneda(s) de 100
hay 1 moneda(s) de 50

hay 1 moneda(s) de 25
(s)
(s)
(s)

1 385
hay 1 moneda(s) de 10
hay O moneda(s) de 5
hay 0 moneda(s) de 1
2 987

3 372
4 624
5 1568

2. Llena la tabla anterior con los resultados de las pruebas de cada caso.

3. Una vez probado el algoritmo, guarda el documento usando en el nombre tus
iniciales seguidas de _PC_P1_CMC. Hazlo llegar a tu profesor por el medio que
acuerden para recibir evaluacion.

Instrumento de evaluacién
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluard tu reporte escrito.

_ mdicador | Si | NoPuntos

Identificar las necesidades, restricciones y objetivos 1
que debe cumplir el reto

Aplica la fase de descomposicion 1
Reconoce los patrones del problema 3

Realiza la abstraccién, conservado Gnicamente lo
esencial del problema.

Disefia el algoritmo adecuado para resolver el reto 2

Implementa y evalta los resultados con una corrida
de escritorio segun los valores de la tabla

PENSAMIENTO COMPUTACIONAL o

13

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en la Progresion 1, realiza la
actividad interactiva, ingresa a ella
escaneando el cédigo QR.

. s

Algoritmia
en IDE

Resuelve problemas cotidianos y académicos mediante la construccién de algoritmos en IDE, utilizando estructuras
de control decisivas e iterativas para automatizar procesos y validar la solucién de manera digital.

£
o
v
o
1 S
o
)
T
[

Tiempo estimado: 12 horas

Tus metas seran:
* |dentificar situaciones de la vida cotidiana que pueden resolverse de manera mas eficiente utilizando secuencias
y ciclos.

e Comprobar la légica y funcionamiento de algoritmos para representar sus soluciones mediante IDE corrigiendo
errores y optimizando el cédigo.

Recuperando lo que sabemos

Este cuestionario es de recuperacién de conocimientos previos, es Util para identificar tus saberes y habilidades y cémo
los relacionas con la realidad, ademas te ayudard a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar cémo entiendes o aplicarias cada situacion, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. ¢Qué entiendes por algoritmoy qué papel crees que desempefia en la resoluciéon de problemas dentro de la programacion?

2. ;Has utilizado antes algin programa o aplicacién para escribir y ejecutar instrucciones o cédigos? Si es asi, scuadl fue tu
experiencia?

3. ;Qué consideras que es un Entorno de Desarrollo Integrado (IDE) y cuél podria ser su funcién en la programacion?

4. ;Qué significa que un lenguaje de programacion o pseudolenguaje tenga una sintaxis definida? ;Por qué crees que es
necesario respetarla?

m 3

Reactivando mis conocimientos

Cada vez que organizas tu tiempo, divides una tarea en pasos o buscas la forma mas rdpida para lograr un objetivo, estas
aplicando légica, secuencia y analisis de problemas, los mismos principios que se utilizan al crear un algoritmo.

Imagina este escenario:

Después de la escuela, usas tu celular y te das cuenta de que tienes demasiadas notificaciones: mensajes, correos, avisos de
redes y recordatorios. Tu objetivo es ordenar tus notificaciones para atender primero las mas importantes (por ejemplo, una
tarea, un mensaje urgente o una alerta del calendario). Para lograrlo, necesitas pensar en un procedimiento paso a paso que
te ayude a decidir qué notificaciones revisar primero y cuéles después.

1. En tu cuaderno o documento digital, escribe los pasos que seguirias para organizar tus notificaciones de manera l6gica
y eficiente.

2. ldentifica los elementos del problema:
¢ Datos de entrada: ;Qué informacién recibes? (mensajes, horarios, alertas, etc.)

* Proceso: jQué acciones o reglas aplicas para decidir el orden de atencién?
* Salida: Cuél es el resultado final o estado ideal de tu pantalla?

3. Reflexionay responde en tus notas:

* ;Qué parte de tu procedimiento crees que un programa podria automatizar?
e ;Cémo te ayudaria usar un entorno de desarrollo para simular tu algoritmo antes de programarlo?
* ;Qué ventajas tendria poder observar como se ejecutan tus pasos uno por uno en una simulacién?

Comparte en clase tus pasos y reflexiones con tus comparfieros y el profesor. Analicen juntos cuél de los procedimientos fue
mas claro, ordenado y eficiente, y comenten cémo ese mismo proceso podria transformarse en un algoritmo computacional.

PENSAMIENTO COMPUTACIONAL o u

2.1 Aplicacion en entorno de desarrollo integrado

PSeint

Recurso digital \
g a

Escanea el cédigo QR para descar-
gar el archivo instalador de PSelnt.

El desarrollo del pensamiento computacional requiere comprender cémo las ideas
abstractas se transforman en soluciones concretas mediante algoritmos. En este
proceso, los Entornos de Desarrollo Integrado (IDE, por sus siglas en inglés) des-
empefian un papel esencial, ya que permiten disefar, escribir, ejecutar y depurar
programas dentro de una misma interfaz. El uso de un IDE favorece la practica de
la algoritmia al proporcionar herramientas que ayudan al programador a concen-
trarse en la légica de solucién mas que en los aspectos técnicos del lenguaje.

Histéricamente, los primeros entornos de programacién consistian Unicamente en
editores de texto y compiladores separados. Con el avance de la ingenieria de
software, surgié la necesidad de integrar todos los recursos en una sola plataforma.
Asi nacieron los IDE, que incorporan componentes como un editor de cédigo, un
compilador o intérprete, un depurador y, en algunos casos, simuladores o asis-
tentes visuales. Esta evolucién no solo mejoré la productividad del programador,
sino que también simplificd el proceso de aprendizaje para quienes se inician en
la programacion.

En el contexto educativo, PSelnt (Intérprete de Pseudocddigo) representa una he-
rramienta didactica ideal para comprender los fundamentos de la algoritmia. Su
disefio se orienta a facilitar la construcciéon de algoritmos utilizando un pseudo-
lenguaje cercano al espafiol, lo que reduce la complejidad sintactica y permite
enfocarse en la logica del problema. PSeint simula el funcionamiento de un len-
guaje estructurado, favoreciendo la comprension del flujo l6gico y del proceso de
ejecucion de un programa.

Interfaz

La interfaz de PSelnt esta disefiada para facilitar el trabajo con algoritmos, en ella
se distinguen los siguientes elementos principales.

Interfaz de PSeint

> Panel de Variables: muestra las variables identificadas, organizadas por proce-
so y subprocesos. El icono representa el tipo de dato.

> Panel de Operadores y Funciones: presenta un catédlogo con las funciones y
constantes predefinidas y la lista de posibles operadores, organizado por catego-
rias. Al hacer clic sobre uno de ellos se inserta en el pseudocddigo.

» Panel de Comandos: permite introducir acciones o estructuras de control me-
diante un clic. Introduce el cédigo del proceso seleccionado, marcando con re-
cuadros las partes que se deben completar (expresiones, acciones, valores, etc.).

» Panel de Ayuda Rapida: brinda detalles y sugerencias para corregir los errores
que el intérprete encuentre en el algoritmo, se despliega automéaticamente en la
parte inferior de la ventana cada vez que se introduce un comando mediante el
Panel de Comandos o cada vez que se hace clic sobre un mensaje de error.

» Panel de Ejecucién Paso a Paso: permite controlar de forma detallada la eje-
cucion del algoritmo o configurar la prueba de escritorio, si no se encuentra visi-
ble se puede ejecutar al pulsar el comando ubicado en el margen derecho de la
ventana o desde la barra de accesos rapidos. La prueba de escritorio consiste en
realizar un seguimiento detallado de los valores que van tomando las variables en
cada paso, PSelnt construye una tabla automaticamente mostrando las variables o
expresiones seleccionadas.

Prueba de escritorio

Estudiando

Dedica un tiempo a la lectura de las péaginas correspondientes al tema Compo-

nentes del pseudolenguaje. Realizar esta tarea te facilitara las actividades que el
profesor guiara en las siguientes sesiones.

Componentes del pseudolenguaje

Todo algoritmo en pseudocddigo tiene la siguiente estructura general:

Comienza con la palabra clave Algoritmo, se- Algoritmo Titulo
guida del nombre del programa, luego le si- accién 1;
gue una secuencia de instrucciones y finaliza accion 2;

con la palabra FinAlgoritmo. Una secuencia de
instrucciones es una lista de una o mas instruc-

. accién n;
ciones y/o estructuras de control. ’

FinAlgoritmo

Progresion 2

Boton de
funcioén ejecutar
paso a paso

Pazo a pazo x

b Comenzar

P PrimerPaso

Evaluar...

SEIN}ONIYS Y A sopuewlon) oo L-_a';_'e_-J

Velocidad:
£ >

Entrar en subprocesos
Mostrar trazado

Prueba de Escritorio

[Explicar en detalle c/paso

Ayuda...

Panel de ejecucion paso a paso

Para saber mas...

Escanea el cédigo QR y observa el
video Interfaz de PSelnt.

Progresion 2

Conceptos clave

Palabras reservadas. Son términos
con un significado especifico en
PSelnt, como Algoritmo, Como, Leer
o Escribir. Forman parte del lengua-
je del algoritmo y no pueden usarse
como nombres de variables.

¢Sabias qué...?

En PSelnt existen constantes predefi-
nidas como Ply E (nimero de Euler),
que representan valores matemati-
cos universales. Estas pueden usarse
directamente en los algoritmos sin
necesidad de declararlas, facilitando
calculos con mayor precision.

Dias_semana <« 7

Constante

cas exactas.

Caracter

Almacena niimeros con parte decimal. Permite realizar célculos con precisién fraccionaria.

Contiene un caracter o cadenas de caracteres encerrados entre comillas. Es Gtil para

Representa valores de verdad, empleados en condiciones o decisiones del algoritmo.

» Variables

Una variable representa un espacio de memoria destinado a almacenar informa-
cion temporal durante la ejecucion de un programa. Por ejemplo, si se desea cal-
cular el area de un tridangulo, es necesario guardar los valores de la base y la altura
en variables, para luego realizar la operacién correspondiente y almacenar el re-
sultado en otra. El valor contenido en una variable puede modificarse conforme
avanza la ejecucion del programa, lo que le otorga su caracter dindmico. En pocas
palabras, una variable es un contenedor que permite guardar y manipular datos.

Cada variable se identifica mediante un nombre o identificador, el cual debe
seguir ciertas reglas para evitar ambigtiedades. Un identificador valido inicia con
una letra y puede incluir letras, nimeros o guiones bajos, pero no admite espa-
cios, operadores ni coincidencias con palabras reservadas del lenguaje. Algunos
ejemplos podrian ser: A, Lado1, Total, Nombre_Apellido o DireccionCorreo. En la
mayoria de los lenguajes de programacion, los nombres de variables no pueden
contener caracteres especiales (acentos, diéresis, letra “fi”).

En PSelnt, toda variable estd asociada a un tipo de dato, lo que implica que solo
puede almacenar valores del mismo tipo durante la ejecucion. Por ejemplo, una
variable declarada para guardar nimeros no puede utilizarse posteriormente para
almacenar texto.

p Constantes

Una constante es un espacio de memoria cuyo valor permanece invariable duran-
te toda la ejecucidn del algoritmo. A diferencia de las variables, las constantes se
utilizan para representar datos fijos, como valores matematicos o parametros que
no deben modificarse, garantizando asi la estabilidad y legibilidad del programa.

El uso de constantes evita errores por cambios accidentales en datos esenciales y
mejora la comprension del algoritmo, ya que permite identificar facilmente valores
que poseen un significado especifico dentro del programa.

» Tipos de datos

Los tipos de datos determinan la clase de informacién que una variable puede
almacenar y las operaciones que se pueden realizar con ella. En PSelnt los tipos
bésicos son entero, real, caréctery légico.

: Ejemplos de Valor

Representa nimeros sin decimales. Se utiliza para contar o realizar operaciones aritméti-

15,-10,0

8.75,-2.5,0.33

uAu' ::5::, u?u, ”CarlOS"

manejar datos de texto individuales, palabras o mensajes.

Verdadero, Falso

» Operadores

En un algoritmo, los operadores son simbolos que permiten realizar operaciones
entre valores o variables. Constituyen elementos esenciales del lenguaje, ya que
posibilitan el procesamiento de datos y la toma de decisiones dentro del pro-
grama. En PSelnt, los operadores se agrupan segin la funcién que desempefian:
aritmética, relacional y légica.

Los operadores aritméticos se utilizan para efectuar célculos numéricos con varia-
bles de tipo entero o real. Permiten realizar operaciones basicas como suma, resta,
multiplicacién, divisién o calculo del residuo de una divisién y se emplean dentro
de condiciones y estructuras de control.

Operadores

Suma 5+3 8

- Resta 10-4 6

* Multiplicacién 2*3 6

/ Division 9/3 3

% o MOD Modulo (residuo) 10%3 1

Los operadores relacionales comparan dos valores y devuelven un resultado 16gi-
co: Verdadero o Falso. Son indispensables en estructuras condicionales, donde el
flujo del algoritmo depende del cumplimiento de una condicién.

Para saber mas... @

PSelnt ofrece funciones predefini-
das que permiten realizar calculos,
manejar texto o generar numeros
aleatorios con solo una instruccién.

Escanea el QR para acceder a un
documento con las funciones pre-
definidas mas comunes.

Operadores Resultado
Relacionales

Igual a Verdadero si Ay B son iguales
<> Distinto que A<>B Verdadero si A y B son diferentes
< Menor que A<B Verdadero si A es menor que B
> Mayor que A>B Verdadero si A es mayor que B
<= Menor o igual que A<=B Verdadero si A es menor o igual que B
>= Mayor o igual que A>=B Verdadero si A es mayor o igual que B

Los operadores légicos se utilizan para combinar o modificar expresiones relacio-
nales. Permiten evaluar condiciones complejas y controlar la l6gica del programa,
resultan esenciales para la toma de decisiones y la repeticién controlada de proce-
sos dentro de un algoritmo.

Operadores Resultado
Légicos

&oY Conjuncioén légica (AND) (A>0)& (B < 10) Verdadero si ambas condiciones se cumplen
|JuOo Disyuncién légica (OR) (A=5)1(B=7) Verdadero si al menos una condicién se cumple
~oNO Negacion légica (NOT) ~ (A =05) Verdadero si A no esigual a 5

PENSAMIENTO COMPUTACIONAL o

¢Sabias qué...? m

En PSelnt existen acciones secuen-
ciales especiales. Por ejemplo, Lim-
piar Pantalla, Esperar Tecla, que
detiene el algoritmo hasta presionar
una tecla y Esperar, que pausa la
ejecucion durante un tiempo espe-
cifico.

El dominio de los operadores en PSelnt permite traducir razonamientos matemati-
cos y légicos en instrucciones comprensibles para el intérprete. Su uso adecuado
garantiza la correcta evaluacion de expresiones, la manipulacién precisa de datos y
la ejecucién coherente de algoritmos dentro del entorno de desarrollo.

» Acciones primitivas secuenciales

Las acciones primitivas secuenciales representan las instrucciones méas basicas y
directas que un algoritmo puede ejecutar en PSelnt. Se denominan primitivas por-
que constituyen operaciones elementales, que no se pueden descomponer en pa-
sos mas simples dentro del pseudolenguaje. A su vez, se consideran secuenciales
porque cada instruccion se ejecuta Unicamente después de que la anterior haya
finalizado, garantizando una secuencia ordenada y predecible.

Entre las principales acciones primitivas secuenciales en PSelnt se encuentran:

| Accion | Descripcisn Eempo

Definir Declara una variable indicando su tipo de dato Definir edad Como Entero
Asignar Establece el valor de una variable edad <16

Leer Permite ingresar informacién desde el teclado y almacenarla en una variable Leer edad
Escribir Muestra en pantalla mensajes o resultados almacenados en variables Escribir “Tu edad es: “, edad

Recurso digital \
A

Escanea el cédigo QR, descarga el
documento y sigue las instrucciones
de la actividad con la guia de tu pro-
fesor.

Estas acciones son fundamentales para crear programas sencillos y entender cémo
se ejecutan paso a paso los algoritmos. Gracias a ellas, es posible ingresar datos,
procesarlos y mostrar resultados sin utilizar condiciones ni repeticiones. Dominar
las acciones primitivas secuenciales ayuda a comprender la légica de la progra-
macién estructurada, ya que permite reforzar los conceptos de entrada, proceso y
salida, base del pensamiento algoritmico.

Ejercitando mis conocimientos

Para reforzar tu aprendizaje realiza de manera individual y con la gufa de tu profe-
sor la siguiente actividad:

1. Descarga el archivo de MS Word escaneando el cédigo QR de esta pagina.

2. Aplica las fases del pensamiento computacional y utiliza el IDE PSelnt para dise-
fiar, implementar y evaluar el algoritmo que resuelva el problema planteado en el
documento que descargaste.

3. Una vez realizado el algoritmo en PSelnt activa la ejecuciéon paso a paso y haz
un seguimiento del proceso capturando la informacién o valores correspondientes
en cada celda de la tabla de ejecucion paso a paso en el archivo de MS Word que
descargaste.

4. Guarda el algoritmo en PSelnt y el documento utilizando en el nombre de am-
bos archivos tus iniciales seguidas de _PC_P2_EO01.

5. Comparte ambos archivos con tu profesor para recibir retroalimentacion por el
medio que acuerden.

2.2 Estructuras de control

Una estructura de control es un mecanismo que posibilita alterar el orden natural
de ejecucion de las instrucciones dentro de un programa en el &mbito de la pro-
gramacion.

Las instrucciones por defecto se ejecutan de manera secuencial, es decir, una tras
otra. Sin embargo, en la mayoria de los algoritmos es necesario tomar decisiones,
como cuando se ejecuta un bloque de coédigo Unicamente si se cumple una condi-
cion, o bien realizar tareas repetitivas, como calcular promedios de varios valores
o recorrer una lista.

Por esta razon, se utilizan tres tipos fundamentales de estructuras de control:

1. Secuenciales, donde las instrucciones se ejecutan en orden lineal.
2. Condicionales, donde el flujo depende de una o varias condiciones légicas.

3. Repetitivas, donde un conjunto de instrucciones se ejecuta varias veces.

Ademas de facilitar la toma de decisiones y la repeticién de tareas, las estructuras
de control permiten escribir programas mas eficientes, legibles y faciles de man-
tener. Gracias a ellas, los desarrolladores pueden dividir problemas complejos en
bloques légicos mas simples, lo que mejora la organizacion del cédigo y reduce la
posibilidad de errores.

En entornos educativos como PSelnt, estas estructuras son fundamentales para
que los estudiantes comprendan cémo fluye la l6gica en un algoritmo y cémo se
puede controlar ese flujo para resolver problemas de manera efectiva.

Estructura secuencial

Este tipo de estructura es la mas simple y también la mas facil de aplicar. En ella, las
instrucciones se ejecutan una detras de otra, sin saltos ni repeticiones, siguiendo
Unicamente el orden en que han sido escritas.

Este tipo de estructura es ideal cuando todas las acciones deben realizarse exacta-
mente una a la vez y en el mismo orden.

on el fin de ilustrar de manera més precisa el uso de la estructura secuencial, se
C | fin de ilustrar d I de la estructura secuencial
propone la resolucion del siguiente problema.

» Combo Gamer RGB

Luis, un joven streamer, estd armando su setup gamer para transmitir sus partidas
en Twitch. En su carrito tiene un mouse gamer RGB, unos audifonos con micréfono
profesional y un tapete luminoso para el mouse.

Cada articulo tiene su precio, pero al pagar debera sumarse el IVA del 16 %. Tu mi-
sién es ayudar a Luis a crear un algoritmo para calcular el total final de su compra.

Progresion 2

¢Sabias qué...?

Un simple error en el orden secuen-
cial de las instrucciones puede cam-
biar completamente el resultado de
un programa.

Estructura secuencial

Entrada

Tres nimeros reales separados por un espacio: el precio del mouse, de los audifo-
¢Sabias qué...? nos y del tapete RGB.

Usar correctamente los condiciona- Salida

les puede mejorar la eficiencia del , . .
P) Un ndmero real con dos decimales: el total a pagar incluyendo IVA.

programa al evitar operaciones inne-

cesarias.
Entrada Salida

399.90
649.50 1448.14
199.00

Algoritmo en PSelint

Algoritmo ComboRGB
Definir mouse,audifonos,tapete,total,iva Como Real
mouse <- 0
audifonos <- 0
tapete <- 0
total <- ©
iva <- 0
Escribir “Precio del mouse: ”
Leer mouse
Escribir “Precio de los audifonos: ”
Leer audifonos
Escribir “Precio del tapete: ”
Leer tapete

total <- (mouse + audifonos + tapete) * 1.16
total <- trunc(total*100)/100

Escribir “Total a pagar: ”,total

FinAlgoritmo

Estructuras condicionales

Este tipo de estructuras permiten “tomar decisiones” dentro de un algoritmo. En
la vida cotidiana, se usan constantemente frases como:

> “Sillueve, llevaré paraguas.”

> “Sies de noche, encenderé la luz; si no, la apagaré.”

> “Sisaco buena calificacion en Pensamiento Computacional, celebraré; si no,
estudiaré mas.”

En programacién ocurre algo similar, el algoritmo ejecuta una accién solo si se
cumple cierta condicién légica.

PSelnt utiliza la palabra clave Sl para expresar este tipo de decisiones. Dependien-
do de la complejidad, existen varias formas de estructuras condicionales: simple,
doble, anidada y segin la opcidn.

» Condicional Simple

La estructura simple evaltia una condicién légica y si se cumple, ejecuta una o mas
instrucciones; de lo contrario, continta con el flujo normal del programa.

La sintaxis de un condicional simple seria asi:

Si (condicién) Entonces
// instrucciones a ejecutar si se cumple la condicién
FinSi

El ejemplo que se muestra a continuacién evidencia la aplicacion del condicional simple.

» Acceso al concierto

La banda de rock Jayler est4 por comenzar su concierto en la ciudad de Mazatlan,
la entrada al concierto solo estad permitida para mayores de 15 afios.

Te han contratado para que ayudes a la banda a controlar el acceso a través de
una aplicacién, para eso necesitas crear un algoritmo que reciba la edad de una
persona y determine si puede acceder al concierto.

Entrada
Un niimero entero que representara la edad del asistente.

Salida
Un mensaje con el texto “Acceso permitido. Disfruta el concierto!” si el asistente
cumple con la condicién para acceder al concierto.

;Cuél es tu edad? 16 Acceso permitido. Disfruta el concierto!

;Cuél es tu edad? 15

Algoritmo en PSelnt

Algoritmo ConciertoJayler
Definir edad Como Entero
edad <- 0
Escribir
Leer edad

¢

‘¢.Cudl es tu edad?”

Si (edad > 15) Entonces
Escribir “Acceso permitido. Disfruta el concierto!”
FinSi

FinAlgoritmo

Progresion 2

Estructura condicional simple

Para saber mas... @

Accede al video Estructura de con-
trol Simple en PSelnt, para ampliar
la explicacion del tema. Hazlo esca-
neando el Cédigo QR.

¢Sabias qué...? m

Puedes usar condicionales para mos-
trar diferentes mensajes, validar da-
tos o controlar el flujo del programa.

Estructura condicional doble

Para saber mas... @

Escanea el cédigo QR y observa el
video Estructura condicional doble
en PSelnt.

» Condicional doble

La estructura condicional doble agrega una alternativa cuando la condicién no se
cumple. En este caso, se usa la palabra clave Sino, que indica que instrucciones
ejecutar en el caso de que no sea cumplida la condicién.

La sintaxis de un condicional doble, seria asi:

Si (condicién) Entonces

// Blogue de instrucciones si se cumple la condicién
Sino

// Bloque de instrucciones si NO se cumple la condicién
FinSi

A continuacién, se presenta un ejemplo que pone en practica la estructura condi-
cional doble.

» Descuento Estudiantil GeekBooks

La tienda digital GeekBooks premia a los estudiantes aplicando un 10% de des-
cuento en cualquier libro digital si presentan su credencial escolar.

Entrada
Un ndmero real que indica el precio del libro,
Un cardcter que indica si el cliente presenta credencial de estudiante o no (S=si, N=no)

Salida
Un mensaje compuesto por el texto: “Total a pagar: ” unido con el nimero real que
corresponde al monto total a pagar.

¢ Cudl es precio del libro digital? 250.00

;Credencial de estudiante? S Total a pagar: 225.00

¢ Cudl es precio del libro digital? 250.00

;Credencial de estudiante? N Totel @ jpeierer: 250,00

Algoritmo en PSelnt

Algoritmo DescuetoEstudiantil
Definir precio,total Como Real
Definir credencial Como Caracter

precio <- 0
total <- ©
credencial <-

()

¢

Escribir “;Cual es el precio del libro?”

Leer precio

Escribir “;Tienes credencial de estudiante? (S o N)”
Leer credencial

Si (credencial= ‘S’ 0 credencial= ‘s’) Entonces
total <- precio * .90

SiNo
total <- precio

FinSi

total <- trunc(total * 100) / 100

”

Escribir “Total a pagar: ”, total
FinAlgoritmo

Ejercitando mis conocimientos

Para reforzar tu aprendizaje realiza de manera individual y con la guia de tu profe-
sor la siguiente actividad:

1. Descarga el archivo PDF escaneando el codigo QR donde encontraras un pro-
blema para aplicar el uso de la estructura condicional simple y doble.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales sequidas de _PC_P2_E02.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

Progresion 2

Recurso digital \
g .\\

Escanea el cédigo QR para descar-
gar el archivo del problema de es-
tructura condicional simple y doble.

Progresion 2

Estructura condicional anidada

Para saber mas...

Accede al video Estructura de con-
trol Anidada en PSelnt, para ampliar
la explicacion del tema. Hazlo esca-
neando el Cédigo QR.

» Condicional anidada

En el desarrollo de algoritmos, una sola condicién no siempre resulta suficiente
para decidir qué debe hacer un programa. Cuando la decisién depende de varios
factores al mismo tiempo, es necesario utilizar una estructura que permita revisar
mas de una condicién de manera ordenada. En estos casos, las condicionales ani-
dadas se convierten en un recurso importante, ya que permiten colocar una con-
dicién dentro de otra para establecer un orden légico en la toma de decisiones.

El uso de condicionales anidadas responde a la necesidad de relacionar distintos
criterios que influyen en el funcionamiento del programa. En muchos problemas, la
primera condicién solo sirve para identificar un conjunto general de posibilidades,
y cada una de ellas requiere luego una verificacién mas especifica. Esta forma de
organizacién ayuda a que el algoritmo sea més preciso y pueda adaptarse a situa-
ciones diversas, evitando soluciones demasiado simples o poco flexibles.

En la practica, estas estructuras son especialmente Utiles en algoritmos que deben
realizar varias verificaciones, como sistemas de acceso seguro, célculos con dife-
rentes rangos de valores o programas que dependen de ciertos parametros del
entorno. En todos estos casos, las condicionales anidadas ayudan a que el progra-
ma responda de manera adecuada a distintas situaciones y evite errores légicos.

Finalmente, aunque las condicionales anidadas son una herramienta valiosa, no
siempre representan la mejor opcién. Cuando el nimero de condiciones es muy
grande o su relacion es compleja, puede ser mas conveniente utilizar otras estrate-
gias, como tablas de decision, operadores l6gicos combinados o métodos propios
de la programacion orientada a objetos. Elegir la alternativa adecuada permite
mejorar tanto el rendimiento del programa como la facilidad para entender y man-
tener el cédigo.

El lenguaje PSelnt admite esta modalidad mediante la reiteracién de bloques del
tipo Si...Entonces...Sino dentro de otros similares, facilitando asi una légica de
decisiéon méas compleja y estructurada.

La sintaxis de una condicional anidada seria:

Si (condicién1) Entonces
// Bloque de instrucciones de condicion'
Sino
Si (condicién2) Entonces
// Bloque de instrucciones de condiciéon2
Sino
// Bloque de instrucciones si no cumplen condicién 1y 2
FinSi

El ejemplo siguiente tiene como propdsito mostrar la estructura de condicional
anidada.

» Héroe digital

En el videojuego “Héroes del Cédigo”, los jugadores obtienen recompensas dia-
rias segun su nivel y si completaron el reto del dia.

Dependiendo de su esfuerzo, pueden recibir desde simples monedas hasta una
skin épica legendaria.

Reglas del juego:
Nivel = 20
Reto completado — Skin Epica
No completado - Skin Rara
Nivel < 20
Reto completado - Caja de [tems
No completado - Monedas x100

Crea un algoritmo que sea capaz de determinar la recompensa del jugador.

Entrada
Un nimero entero que indica el nivel del jugador
Un caréacter simboliza si se cumplié o no el reto (S=si, N=no)

Salida
Mensaje con la recompensa obtenida por el jugador

;Cudl es nivel del héroe? 22 e
Skin Epica
¢Reto completado? S

;Cual es nivel del héroe? 22

Skin R
¢Reto completado? N n rara

;Cudl es nivel del héroe? 19)
Caja de Items
(Reto completado? S

¢Cuédl es nivel del héroe? 19

¢Reto completado? N MBI

Progresion 2

Algoritmo en PSelnt

Algoritmo HeroeDigital
Definir nivel Como Entero
Definir reto Como Caracter

nivel <- 0
reto <- °’

Escribir “;Cual es el nivel del jugador?”

Leer nivel

Escribir “;Completd el reto diario? (S=si, N=no)”
Leer reto

Si (nivel >= 20) Entonces

Si (reto= ‘s’ 0 reto= ‘S’) Entonces
Escribir “Skin Epica”

SiNo
Escribir “Skin Rara”
FinSi
SiNo
Si (reto= ‘S’ 0 reto= ‘s’) Entonces
Escribir “Caja de ftems”
SiNo
Escribir “Monedas x100”
FinSi
FinSi
FinAlgoritmo

Fortalece tu dominio de las estructuras condicionales anidadas elaborando de ma-
nera individual y con la ayuda de tu profesor la actividad propuesta:

Ejercitando mis conocimientos
Recurso digital \
)

Escanea el cédigo QR para descar-

gar el archivo del problema de la es-
TuEiumE csndlctens anidads., 1. Descarga el archivo PDF escaneando el codigo QR donde encontraras un pro-

blema para aplicar el uso de la de la Estructura Condicional Anidada.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_EO03.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

» Estructura Segun...Hacer

La estructura Segun...Hacer, equivalente a switch o case en otros lenguajes de
programacion, se utiliza cuando es necesario tomar decisiones basadas en el valor
de una sola variable con multiples opciones posibles. Su uso resulta mas ordenado
y legible que el de varias estructuras condicionales anidadas, especialmente cuan-
do existen muchas alternativas de ejecucion.

La sintaxis de la estructura Segun...Hacer es la siguiente:

Seguin variable Hacer
Opcidn 1:
// Instrucciones si variable = Opcién 1
Opcidn 2:
// Instrucciones si variable = Opcién 2
De Otro Modo:
// Instrucciones si no coincide ninguna opcién
FinSegun

En el siguiente ejemplo se expone la aplicacion de la estructura Segan...Hacer.

» Reacciones en Red Social

Una nueva red social lamada MoodWave registra las reacciones de los usuarios en
publicaciones.

Cada reaccién tiene un cédigo numérico:
1. "Me gusta” 4. "Me divierte”
2. "Me encanta” 5. "Me entristece”
3. "Me asombra”

De otro modo: “Reaccién no vélida”

Esta red social esta reclutando gente para desarrollar el algoritmo que muestre la
reaccién correspondiente, asi que disefia el algoritmo para quedarte con el puesto
de programador.

Entrada
Un niimero entero que representa el cédigo de la reaccion

Salida
El mensaje que indica la reaccién correspondiente al codigo, en caso de recibir un
cédigo que no existe en la tabla se debe mostrar el mensaje “Reaccién no valida”.

¢Qué codigo de reaccion deseas usar? (1-5): 4 Me divierte

;Qué cdédigo de reaccién deseas usar? (1-5): 1 Me gusta

;Qué cdédigo de reaccién deseas usar? (1-5): 6 Reaccion no vélida
o

Progresion 2

Estructura repetitiva
segun...hacer

Para saber mas...

Escanea el codigo QR y observa el
video Estructura condicional Segun
la opcién en PSelnt.

Algoritmo en PSelnt

Algoritmo RedSocial
Definir reaccion Como Entero
reaccion <- 0

Escribir “;Qué cdédigo de reaccidén deseas usar? (1-5)”
Leer reaccion

Segun reaccion Hacer
1: Escribir “Me gusta”

2: Escribir “Me encanta”
3: Escribir “Me asombra”
4: Escribir “Me divierte”
5: Escribir “Me entristece”
De Otro Modo: Escribir “Reaccioén no valida”
FinSegun
FinAlgoritmo

Recurso digital \ Ejercitando mis conocimientos
)

Para reforzar tu aprendizaje realiza de manera individual y con la guia de tu profe-

Escanea el cédigo QR para descar- L. .
J a sor la siguiente actividad:

gar el archivo del problema de la es-

tructura condicional segun...hacer.
1. Descarga el archivo PDF escaneando el codigo QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Condicional Segun...Hacer.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales sequidas de _PC_P2_E04.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

Estructuras repetitivas

En el desarrollo de algoritmos, es comin encontrar situaciones en las que ciertas
operaciones deben repetirse multiples veces.

Escribir el pseudocédigo de estas instrucciones de forma repetitiva resulta poco
practico y aumenta la posibilidad de cometer errores. Por esta razén, se incorporan
estructuras de control conocidas como bucles, ciclos o estructuras repetitivas,
las cuales permiten ejecutar un conjunto de instrucciones de manera automatizada
y controlada, optimizando la eficiencia del cédigo y facilitando su compresion.

En el desarrollo de algoritmos existen tres tipos principales de estructuras repetiti-
vas, en el caso de PSelnt son las siguientes:

» Mientras...Hacer
P Repetir...Hasta Que
» Para...Hasta...Con Paso

Cada una de las mencionadas estructuras repetitivas tiene caracteristicas particula-
res y se utilizan segln el tipo de repeticion que se necesite.

p Estructura Mientras...Hacer

La estructura de control Mientras permite la ejecucion repetitiva de un conjunto
de instrucciones siempre que se cumpla una condicién légica determinada. Esta
condicién se evalla antes de cada iteracion, lo que significa que el bloque de cé-
digo se ejecutarad Unicamente mientras la condicion sea verdadera.

Cuando la condicién deja de cumplirse, es decir, cuando se evaltia como falsa, el
ciclo se interrumpe vy el flujo del programa continda con la siguiente instruccién
fuera del Mientras...Hacer.

La sintaxis de la estructura repetitiva Mientras...Hacer es la siguiente:

Mientras (condicion) Hacer
// Bloque de instrucciones
FinMientras

El momento de evaluar la condicién es antes de ejecutar el bloque, lo que significa
que, si la condicion es falsa desde el principio, el ciclo no se ejecutara ni una sola vez.

Se presenta a continuacién un ejemplo que pone en practica la estructura repeti-
tiva Mientras...Hacer.

» Pasos FitLife

La app FitLife necesita una actualizaciéon que motive mas a moverse a sus usuarios.
Disefia un algoritmo que permita registrar los pasos que da cada usuario hasta
lograr la meta.

Progresion 2

Estructura repetitiva

mientras...hacer

¢Sabias qué...? m

Un bucle infinito ocurre cuando la
condicién de salida nunca se cum-
ple, y el programa sigue repitiéndo-
se sin fin.

Entrada

Sabi . 5 Primero un entero que simboliza la meta en a cumplir en cantidad de pasos.
¢Sabias qué...?

Varias lineas con un entero que corresponden a los pasos dados cada dfa.

Las estructuras repetitivas permiten .
Salida
que una computadora haga en se-

.) Un mensaje que indicara que la meta fue alcanzada y la cantidad de dias que tardé
gundos lo que a ti te tomaria horas.

en lograrla.

Mensaje: “iMeta alcanzada en <ndimero de dias> dias!”

Entrada Salida

¢ Cual es tu meta de pasos? 2000

Pasos dia 1: 125
Pasos dia 2: 350
Pasos dia 3: 634 iMeta alcanzada en 6 dias!
Pasos dia 4: 500
Pasos dia 5: 360
Pasos dia 6: 800

Algoritmo en PSelint

Algoritmo FitLife
Definir dias,meta,pasosDia,acumulado Como Entero

dias <- 1
meta <- 0
pasosDia <- 0
acumulado <- ©

Escribir “;Cudl es tu meta de pasos?”
Leer meta
Para saber mas... @ Mientras (acumulado < meta) Hacer

Escribir “Pasos dia ”,dias,
Leer pasosDia
acumulado <- pasosDia + acumulado
dias <- dias + 1

FinMientras

Accede al video Estructura repetiti-
va Mientras en PSelnt, para ampliar
la explicacion del tema. Hazlo esca-
neando el Cédigo QR.

Escribir “jMeta alcanzada en ”,dias-1,“ dias!”
i

FinAlgoritmo

Ejercitando mis conocimientos

Fortalece tu dominio de la estructura repetitiva mientras...hacer elaborando la si-
guiente actividad:

1. Descarga el archivo PDF escaneando el cédigo QR donde encontraras un pro-
blema donde aplicaras el uso de Estructura Repetitiva Mientras...Hacer.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su funciona-
miento con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales sequidas de _PC_P2_EO0S5.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

» Estructura Repetir...Hasta Que

La estructura Repetir...Hasta Que cumple una funcién similar a la del ciclo Mien-
tras, con la diferencia de que evalia la condicién al final de cada iteracién. Esto
implica que el bloque de instrucciones se ejecuta al menos una vez, sin importar

el valor inicial de la condicion.

En términos de légica, podria decirse que Mientras es una repeticién controlada
por la condicién al inicio, y Repetir...Hasta Que es una repeticién controlada por
la condicién al final.

La sintaxis de la estructura repetitiva Repetir...Hasta Que es la siguiente:

Repetir
// Bloque de instrucciones
Hasta Que (condicién)

El ciclo se repetird mientras la condicién sea falsa, y se detendréa cuando la condi-
cién se vuelva verdadera.

Con el fin de ilustrar de manera mas precisa el uso de estructura repetitiva Repetir...
Hasta Que, se propone la resolucién del siguiente ejercicio. En este caso, se busca
validar la contrasefia del usuario.

» PIN de seguridad UltraApp

La app UltraApp es una aplicacién que ayuda a mantener informacién protegida con
un PIN de 4 digitos. La app solo se desbloquea si el usuario ingresa el PIN correcto.

Como buen estudiante de pensamiento computacional quieres demostrar que pue-
des disenar un algoritmo que sea eficiente para entender como funciona la aplica-
cion UltraApp.

Entrada

Una cadena de caracteres que simboliza el nombre del usuario.

Un numero entero que es el NIP que permite bloquear la informacion

Un numero entero que es el cédigo que se estd ingresando para desbloquear.

Progresion 2

Recurso digital .\\

Escanea el cédigo QR para descar-
gar el archivo del problema de la es-
tructura repetitiva mientras...hacer.

Estructura repetitiva
repetir...hasta

Para saber mas... @

Escanea el codigo QR y observa el
video Estructura de control Repetir
hasta en PSelnt.

Recurso digital .\\

Escanea el codigo QR para descar-
gar el archivo del problema de la es-
tructura repetir...hasta.

Salida

Mensaje de acceso concedido: “Acceso concedido, Bienvenido <usuario> a UltraApp!”

Entrada Salida

¢ Cual es tu nombre de usuario? Brithany
Introduce el NIP secreto: 0212
Accede a UtraApp
NIP: 3405
NIP: 0212

Acceso concedido,
Bienvenid@ Brithany a UltraApp!

Algoritmo en PSelint

Algoritmo UltraApp
Definir NIP,NIP2 Como Entero
Definir nombre Como Caracter

NIP <- O
NIP2 <- 0
Nombre <- “”

Escribir “Cudl es tu nombre de usuario?”
Leer usuario

Escribir “Introduce el NIP secreto:”
Leer NIP

Escribir “Accede a UltraApp”

Repetir
Escribir “NIP: ”
Leer NIP2
Hasta Que NIP=NIP2
Escribir “Acceso concedido, Bienvenid@ ”,nombre, “ a
UltraApp”
FinAlgoritmo

Ejercitando mis conocimientos

Para reforzar tu aprendizaje realiza de manera individual y con la gufa de tu profe-
sor la siguiente actividad:

1. Descarga el archivo PDF escaneando el codigo QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Condicional Repetir...Hasta.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_EO06.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

p Estructura Para...Hasta...Con Paso

La estructura Para se utiliza cuando se sabe de antemano cuantas veces debe
repetirse un conjunto de instrucciones. Es ideal para recorrer un rango numérico
o realizar calculos que implican un contador definido.

La estructura Para incluye tres elementos clave:

1. Variable de control: variable que toma valores consecutivos.
2. Limite inicial y final: determinan desde qué valor comienza y hasta cuél termina.
3. Paso: indica el incremento o decremento entre una iteracién y otra (por defecto es 1).

La sintaxis de la estructura repetitiva Para es la siguiente:

Para variable « inicio Hasta fin Con Paso incremento Hacer
// Blogue de instrucciones
FinPara

El bloque de instrucciones se ejecuta mientras la variable esté dentro del rango
definido. El ejemplo que se muestra a continuacién evidencia la aplicacion de la
estructura repetitiva Para...Hasta.

» Likes por hora - Influencer Simulator

Te decidiste a convertirte en un creador de contenido y deseas analizar el rendi-
miento de tus publicaciones en redes sociales.

Durante varios dias anotas el porcentaje de likes que obtuviste cada dia respecto
al nimero de vistas. Pero, necesitas calcular el promedio general de likes de todos
esos dias para conocer tu desempefio. Por eso decides crear un algoritmo que
pida cuéntos dias deseas evaluar y luego solicite el porcentaje de likes por dia.

Finalmente, mostrara el promedio general de likes redondeado a un decimal y un
mensaje que indique si su rendimiento fue excelente, aceptable o necesita mejorar.

Entrada

Un nimero entero que representa los dias que se van a evaluar, seguido de la
cantidad de likes para cada uno de los dias sleccionados por medio de nimeros
enteros que corresponden al porcentaje de likes obtenidos en cada dia.

Salida
Un mensaje con el promedio de likes.
Mensaje: “Promedio general de likes <promedio>"

Entrada Salida

¢ Cuantos dias deseas evaluar? 5
Porcentaje de likes el dia 1: 85
Porcentaje de likes el dia 2: 78 Promedio general de likes:
Porcentaje de likes el dia 3: 92 84.40
Porcentaje de likes el dia 4: 87
Porcentaje de likes el dia 5: 80

Progresion 2

Estructura repetitiva Para

Para saber mas... @

Accede al video Estructura de con-
trol Para en PSelnt, para ampliar la
explicacion del tema. Hazlo esca-
neando el Cédigo QR.

¢Sabias qué...? m

Dentro de las estructuras repetiti-
vas puedes usar instrucciones como
break o continue para controlar me-
jor el flujo de repeticion.

Recurso digital \
g .\\

Escanea el cédigo QR para descar-
gar el archivo del problema de la es-
tructura para...hasta.

Algoritmo en PSelnt
Algoritmo PromediolLikes

Definir dias, i Como Entero
Definir likes, promedio Como Real

dias <- ©
likes <- 0
promedio <- O
i<-0

Escribir “;Cuantos dias deseas evaluar?”
Leer dias

Para i <- 1 Hasta dias Con Paso 1 Hacer
Escribir “Porcentaje de likes dia ”,i,“: ”
Leer likes
promedio <- promedio + likes

FinPara
promedio <- promedio / dias
Escribir “promedio general de likes: ”,promedio

FinAlgoritmo

Ejercitando mis conocimientos

Refuerza tu comprensiéon sobre el manejo de estructuras repetitivas para...hasta
desarrollando el ejercicio de manera individual y con la guia de tu profesor:

1. Descarga el archivo PDF escaneando el codigo QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Repetitiva Para...Hasta.

2. Genera el algoritmo en PSelnt, y una vez terminado, ejecuta y prueba su funciona-
miento con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales seqguidas de _PC_P2_EO07.

4. Comparte ambos archivos con tu profesor para recibir retroalimentacién por el
medio que acuerden.

La estructura de control repetitiva Para se utiliza en una amplia variedad de situa-
ciones y tiene multiples aplicaciones. En el ejemplo anterior se empled para generar
una secuencia de nimeros con un incremento especifico. Ademas, es til para reco-
rrer los elementos de un arreglo, lo que simpilifica tareas de lectura, procesamiento y
escritura de datos (el concepto de arreglo se trabajara en una progresién posterior).

Ademas, también puede utilizarse en combinacién con estructuras de control con-
dicionales, como se ha analizado anteriormente.

El dominio de las estructuras de control es un pilar fundamental para todo aquel
que se inicia en el drea de la programacion.

Ventajas de combinar diferentes estructuras de control

1. Permiten crear programas mas completos, capaces de crecer y adaptarse a
nuevas funciones.

2. Mejoran la organizacién del cédigo, lo que facilita su lectura, mantenimiento
y modificacién.

3. Favorece la reutilizacién de instrucciones, ahorrando tiempo en tareas similares.
4. Hacen posible la toma de decisiones dentro del programa, de acuerdo con la
informacién proporcionada por el usuario.

5. Facilitan la ejecucion repetida de acciones sin necesidad de escribir multiples
veces las mismas instrucciones.

Las estructuras de control son fundamentales para desarrollar programas interacti-
vos, como sistemas de gestién, videojuegos o simulaciones.

El aprendizaje mediante PSelnt proporciona una base sélida, ya que prioriza la
l6gica algoritmica y contribuye a que se desarrolle una mentalidad analitica antes
de enfrentarse a lenguajes de programacion formales.

Ejercitando mis conocimientos
De manera colaborativa en clase presencial, realicen lo siguiente:

1. En un documento de MS Word elaboren una tabla comparativa, donde analicen
y comparen las tres estructuras de control principales:

» Estructuras secuenciales
» Estructuras condicionales

» Estructuras repetitivas

Para cada estructura, incluyan los siguientes aspectos:

Aspectos para comparar

Uso o propésito principal ¢ Para qué tipo de problema se utiliza?
Funcionamiento légico ;Como se ejecutan las instrucciones en esta estructura?
Ejemplo de problema donde se aplica Describan una situacién cotidiana o algoritmica donde se usaria.
Sintaxis basica en PSelnt Escribe la estructura correcta en PSelnt.
Ventajas y limitaciones Comentar cudndo es mas eficiente o cudndo no conviene usarla.

2. Agreguen al final de la tabla una pequefa conclusién donde reflexionen porque
consideran que es necesario el uso de estructuras de control en el disefio de algo-
ritmos para resolver problemas.

3. Guarden el documento usando en el nombre del archivo el nimero de equipo
seguido de _PC_P2_EO08

4. Compartan el documento con su profesor por el medio que hayan acordado.

Concretando mis conocimientos

Es tiempo de demostrar tu aprendizaje de los temas de Algoritmia en IDE, retinete
con tu equipo de trabajo y de manera colaborativa realicen lo siguiente:

1. Inicia un nuevo algoritmo en PSeint que resuelva el siguiente problema: Cerebro
Neuronal — Entrenando a mi IA.

La empresa NeuraMind te ha invitado a participar en la calibracién de su nuevo mo-
delo de inteligencia artificial llamado NeuroCore. Este modelo aprende a reconocer
patrones visuales, y su nivel de precisién mejora con cada ronda de entrenamiento.
Sin embargo, los cientificos notaron tres comportamientos importantes durante las
pruebas:

> Avance constante: en cada ronda, el modelo gana cierta cantidad de precisién
que siempre esté relacionada con una tasa base de aprendizaje establecida por los
ingenieros.

> Progreso acumulativo: mientras mas rondas se completan, la IA mejora mas
rapido porque “aprende a aprender”.

> Fatiga del sistema: a pesar de la mejora continua, en cada entrenamiento el
sistema pierde un poco de rendimiento por la sobrecarga de datos (0.5 cada ronda).

Con base en estos tres factores, tu equipo debera descubrir y proponer una férmula
matemética que modele el aumento de la precision del modelo de IA en cada ronda,
partiendo de un valor inicial del 50% de precision.

El modelo se considerara listo para implementarse si la precision es minima de 90 %.

Entrada
Deberéan recibirse tres datos:

® El nombre del modelo de IA.
® Un nuimero real que corresponde a la tasa base de aprendizaje.
® Un entero que es la cantidad de rondas de entrenamiento.

Salida

® Se deberd mostrar un mensaje que indique el nombre del modelo y que el en-
trenamiento ha iniciado.

® Después un mensaje por cada ronda de entrenamiento con la precisiéon actual
de la ronda.

® Por Ultimo, un mensaje que indique si el modelo esta listo para usarse o se reco-
mienda continuar ajustando pardmetros.

Entrada Salida

® Modelo: OrionNet

Entrenamiento de IA iniciado...

* Ingresa el nombre del modelo de IA: OrionNet ® Ronda 1 - Precisién actual: 52.5%
* Ingresa la tasa base de aprendizaje (%): 3 ® Ronda 2 - Precisién actual: 58%
* Ingresa el nimero total de rondas de entrenamiento: 5 ® Ronda 3 - Precision actual: 66.5%

® Ronda 4 - Precisién actual: 78%
® Ronda 5 - Precisién actual 92.5%
¢ Entrenamiento exitoso: El modelo esté listo para usarse.

* Modelo: AlphaNet

Entrenamiento de IA iniciado...

* Ingresa el nombre del modelo de IA: AlphaNet
* Ingresa la tasa base de aprendizaje (%): 2.5
® Ingresa el niUmero total de rondas de entrenamiento: 4

® Ronda 1 - Precisién actual: 52.5%
® Ronda 2 - Precisién actual: 56.5%
® Ronda 3 - Precisién actual: 63.5%

* Ronda 4 - Precision actual: 73%
* Entrenamiento incompleto: se recomienda continuar

ajustando parametros

2. Una vez terminado el algoritmo ejecuta y comprueba su correcto funcionamien-
to con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSelnt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_CMC.

4. Comparte con tu profesor por el medio que indique tu algoritmo probado y listo
para recibir evaluacion.

Instrumento de evaluaciéon

Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluaré tu programa en PSeint.

| mdiedor S| No | Puntos

El algoritmo solicita correctamente los tres
datos de entrada (nombre, tasa de aprendiza- 1
je, rondas).

Se muestra un mensaje inicial indicando el
nombre del modelo y el inicio del entrena- 1
miento.

Se calcula correctamente la precisién en cada
ronda considerando los tres factores: avance 3
constante, progreso acumulativo y fatiga.

Se muestra la precision actual en cada ronda

. 2
con formato claro y comprensible.
Se incluye una condicién final que evalda si el 5
modelo esté listo (= 90%) o necesita ajustes.
El cédigo estd bien estructurado, con buena 1

indentacién y uso adecuado de variables.

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en esta progresion, realiza la
actividad interactiva, ingresa a ella
escaneando el cédigo QR

Valorando mi aprendizaje

La evaluacion es un proceso continuo de formacion, Util para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentacién y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guian en
la valoracion de los aprendizajes que adquiriste progresivamente en las primeras dos
secuencias didacticas. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendi

Contesta las siguientes preguntas y reflexiona sobre tu desempefio en estas dos
progresiones.

® ;Cual de las cuatro fases del pensamiento computacional (descomposicién, re-
conocimiento de patrones, abstraccién y disefio de algoritmos) te resulté mas facil
de comprender y aplicar? ;Por qué?

® [magina que debes ensefiarle a un companero qué es un algoritmo. ;Qué ejem-
plo sencillo usarias y por qué lo elegirias para facilitar su comprensién?

® ;Cdémo te ayudo PSelnt a visualizar o comprender la l6gica detras de las estruc-
turas secuenciales, condicionales o repetitivas? Explica con un ejemplo.

® Después de trabajar estos temas ;qué crees que te falta reforzar o seguir prac-
ticando en relacién con la creacién y analisis de algoritmos? Explica cémo planeas
mejorar.

Actividad alternativa

Resuelve la siguiente actividad alternativa para reforzar tus aprendizajes e incre-
mentar tu evaluacién sumativa.

1. Demuestra tu aprendizaje en el tema resoluciéon de problemas estructurados
creando un video acerca de las fases del pensamiento computacional.

2. Explica cada una de las fases de manera clara.
3. Puedes guiar el video resolviendo alguin problema sencillo y cotidiano.

4. Publicalo y envia en enlace a tu profesor para que observe el video y evalte tu
actividad.

Avutoevaluacion

Progresion 2

La autoevaluacién es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una v la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Identifica los principios del pensamien-
to computacional, su descomposicién,
abstraccion y patrones para disefiar,
implementar y evaluar algoritmos de
problemas de su vida cotidiana.

Representa la solucién de problemas
mediante pensamiento algoritmico selec-

cionando métodos, diagramas o técnicas.

Aplica lenguaje algoritmico utilizando
medios digitales para resolver situacio-
nes o problemas del contexto.

Identifica situaciones de la vida cotidiana
que pueden resolverse de manera mas
eficiente utilizando secuencias y ciclos.

Comprueba la légica y funcionamiento
de algoritmos para representar sus solu-
ciones mediante IDE corrigiendo errores
y optimizando el cédigo.

Lo mejor que aprendi fue:

Lo que necesito reforzar es:

Criterios

Nivel de dominio

Silo En
logro | proceso

Identifico los principios del pensamiento computacional.

Aplico cada una de las fases para resolver problemas cotidianos.

Organizo los pasos del algoritmo de manera clara y légica.

Represento soluciones mediante pseudocédigo y diagramas de flujo.

Traduzco mis soluciones algoritmicas a pseudocédigo en un entorno digital.

Ejecuto mis algoritmos en PSelnt para validar su funcionamiento.

Reconozco problemas que pueden resolverse con secuencias y ciclos.

Selecciono la estructura de control adecuada (secuencia, condicional o

repetitiva) en la resolucion de problemas.

Compruebo el funcionamiento de mis algoritmos mediante la ejecucion en el

IDE.

Identifico errores de sintaxis, de légica y de ejecucién en PSelnt.

Calificacién que doy a mi desempeiio:

Coevaluacion

Alin no
lo logro

Evalta el desempefio general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluacion y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos falté (2) Debemos mejorar (1) m

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

Cumplimos cada uno con las tareas asig-
nadas en el plazo estipulado.

Todos participamos activamente en la
elaboracién de los productos.

La calidad de los productos que elabora-
mos fue la adecuada para su entrega.

PENSAMIENTO COMPUTACIONAL o

Se organizé el trabajo, pero no se estipularon
tareas, prioridades o el plazo de entrega final.

Casi todos los miembros del equipo cumplimos
con las tareas asignadas y el plazo estipulado;
teniendo que resolver lo que a otros les fue
encomendado.

Casi todos los miembros del equipo partici-
pamos activamente en la elaboracién de los
productos.

La calidad de los productos que elaboramos fue
en su mayoria la adecuada para su entrega.

No hubo organizacién para realizar nues-
tros trabajos.

Un solo miembro del equipo realizé todos
los productos.

No hubo participacién de los miembros
del equipo en la elaboracion de los
productos.

No se cumplié con la calidad adecuada
de los productos para su entrega.

Total

___de12

°

Programacion estructurada en C++:

Estructuras de control

=
o
n
o
-
o
o
=
(- %

Codifica instrucciones en un lenguaje de programacién estructurada, empleando estructuras de control secuenciales
y repetitivas para determinar el orden légico y eficiente en que se ejecutan en la resolucién de problemas.

Tiempo estimado: 9 horas

Tus metas seran:

® Distinguir la sintaxis bésica de C++ y la utilidad de las estructuras de control para organizar la ejecucion de
instrucciones.

® Representar soluciones a problemas cotidianos y académicos mediante algoritmos que incorporan estructuras
de control secuenciales y repetitivas.

e Codificar, compilary ejecutar programas en C++ validando su funcionamiento y corrigiendo errores en el uso de
estructuras de control.

Recuperando lo que sabemos

Este cuestionario es de recuperacién de conocimientos previos, es Util para identificar tus saberes y habilidades y cémo
los relacionas con la realidad, ademas te ayudara a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar como entiendes o aplicarias cada situacion, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. ;Qué entiendes por programar y por qué crees que es importante en la actualidad?

2. ;Qué problemas cotidianos crees que podrian resolverse mediante la programacion?

3. ¢Coémo imaginas que se comunica una computadora con el programador para ejecutar instrucciones?

4. ;Qué opinas de la relacion entre légica y programacion? ; Por qué crees que son importantes juntas?

m 3

Progresion 3

Reactivando mis conocimientos

Imagina que eres un pequefio robot que solo entiende un conjunto limitado de instrucciones. Tu mision es salir del laberinto
de la imagen, utilizando la menor cantidad de instrucciones posibles.

jPistas importantes!

1. Asume que el robot siempre empieza mirando hacia arriba desde la posicion de INICIO.

2. El laberinto tiene puntos en su interior.

3. Cada vez que uses AVANZAR_1_PASO, el robot se movera de un punto a otro.

4. Si detectas que tienes que hacer la misma accién varias veces seguidas, puedes usar la instruccién
REPETIR X VECES (accioén) para ahorrar 6rdenes.

Escribe en tu cuaderno de notas la secuencia de instrucciones
para que el robot salga del laberinto, comenzando en INICIO
y terminando en SALIDA. Intenta ser lo mas eficiente posible
usando REPETIR.

Instrucciones disponibles para el robot:

® AVANZAR_1_PASO - Cada paso te lleva al siguiente punto.
® GIRAR_DERECHA - Gira 90° a la derecha, manteniendo tu
posicién actual.

® GIRAR_IZQUIERDA - Gira 90 a la izquierda, manteniendo
tu posicion actual.

® REPETIR_VECES (accién) Porejemplo

REPETIR 3 VECES (AVANZAR_1 PASO)

Progresion 3

3.1 Lenguajes de programacion

¢Sabias qué...?

En este simbolo universal, la linea ver-
tical representa encendido, mientras
que el circulo, el apagado; conven-
cion que en 1973 se estandarizo para
los dispositivos electrénicos basan-
dose en los simbolos binarios 1 — En-
cendido y 0 — Apagado.

Relaciénalo con... {@}

En los inicios de la computacion,
las tarjetas perforadas, hechas de
cartulina, eran el principal medio
para almacenar y suministrar datos
e instrucciones a una computadora.
Su uso era en una forma de cédigo
binario fisico; en una posicién espe-
cifica, un agujero representaba un ‘1’
o verdadero y la ausencia de aguje-
ro un ‘0" o falso. Los programadores
creaban sus programas perforando
tarjetas, una por una, luego las api-
laban en orden correcto.

En tanto que el pensamiento computacional es la habilidad cognitiva para analizar
y resolver problemas de manera légica y estructurada, la programacién es la im-
plementacion técnica de una solucién mediante un lenguaje de programacion. En
otras palabras, el pensamiento computacional es el proceso mental para idear la
solucién y la programacion es el acto de materializar esa soluciéon en cédigo.

Programacion es la accién de traducir un algoritmo a instrucciones que una com-
putadora pueda ejecutar. Su objetivo es crear un software funcional que resuel-
va el problema planteado. Para ello se requiere de conocimientos especificos de
sintaxis, estructuras de datos y entornos de desarrollo. Estas instrucciones, reglas
y sintaxis que permitan a los humanos comunicarse con las computadoras para in-
dicarles qué tareas deben realizar, se conocen como lenguajes de programacion.

Entre los programas méas populares que los jévenes usan hoy dia estan las distintas
redes sociales, el software que usan para comunicarse, los que usan como medio
de entretenimiento para ver peliculas en Streaming o los videojuegos, aunque
también se puede hablar de plataformas educativas y productivas donde organizar
tareas o aprender algin lenguaje mediante ejercicios interactivos.

Historia de los lenguajes de programacion

La programacion ha evolucionado junto con la tecnologia. En los inicios de la com-
putacion, por alld en la década de 1940 y 1950, se comenzé con las tarjetas perfo-
radas y los programas se escribian directamente en lenguaje maquina, que usa y
entiende solo el sistema binario basado en 2 digitos: sus simbolos son: Os (ceros) y
1s (unos), fisicamente son apagado y encendido.

La combinacién de estos digitos es lo que usa este lenguaje para representar los
valores, por ejemplo el nimero 1001101, en sistema decimal es el nimero 77. El
lenguaje maquina no entiende de nimeros decimales y letras directamente, sino
que las interpreta como secuencias de nimeros binarios mediante el sistema AS-
CIl. Programar en este lenguaje es un método poco practico y propenso a errores.

Lenguaje maquina con el texto “Hola mundo”.

Con el tiempo, se buscé hacer la programacion mas facil para los humanos, lo que
llevé al surgimiento de los lenguajes de bajo nivel, muy cercanos al hardware de la
computadora, rapidos pero dificil de escribir y mantener; entre ellos esta el popular
lenguaje ensamblador, que permitia usar palabras simbdlicas, como MOV, ADD,
SUB en lugar de nimeros binarios. Sin embargo, seguian siendo de bajo nivel, muy
cercanos al lenguaje de la computadora y poco intuitivos para las personas.

Transicion de lenguaje maquina a instrucciones de lenguaje ensamblador.

La caracteristica principal de estos lenguajes son su alto grado de abstraccién, lo
que significa que oculta los detalles de la arquitectura del hardware, permitiendo
a los programadores centrarse en la l6gica del problema a resolver en lugar de
detalles de bajo nivel como la gestion de la memoria.

Algunos de los mas influyentes fueron: Fortran, Cobol, Basic, Cy C++. Actualmen-
te lenguajes como Pythom, Java y JavaScript son mayormente usados por tener
una sintaxis clara permitiendo crear aplicaciones robustas o para el desarrollo en
web, mientras que Basic es facil de usar y aprender.

Posterior a los lenguajes de alto nivel, se tomé lo mejor de Cy se le afnadié una
forma de programar llamada Programacion Orientada a Objetos (OOP).

Al principio se le llamé C con Clases, pero luego se rebautizé como C++, ofre-
ciendo un balance entre el control de bajo nivel y las abstracciones de alto nivel,
ganandose el termino de lenguaje medio por su facilidad de lenguaje y el poder
que da de manipular la memoria.

Conceptos clave @

ASCII. (American Estandar Code for
Information Interchange). Sistema de
codificacion estandar para caracte-
res que permite a las computadoras
representar texto. Utiliza una com-
binacién de 7 u 8 valores (bits) para
representar 128 o 256 caracteres,
respectivamente. Por ejemplo, la pa-
labra ‘Hola” en lenguaje maquina se
escribe como 01001000 01101111
01101100 01100001 y cuyo codigo
ASClles 72 111 108 108 97.

Para saber mas...

Accede a la presentacion interactiva
Lenguajes de programacion y conoce
mas caracteristicas. Hazlo escanean-
do el Cédigo QR.

Clasificaciéon de los lenguajes
Existen varias formas de clasificar los lenguajes:

Por nivel de abstraccién:

® Bajo nivel. Como ensamblador y lenguaje maquina. Si bien son répidos tam-
bién son dificiles de escribir y no son portables, es decir, un cédigo de ensambla-
dor para el celular no funciona en una computadora personal.

® Alto nivel. Entre ellos Python, Java, JavaScript, C++ y C#. Son mas faciles de
leer y escribir, ademas son portables.

Por paradigma de programacién:

Esta clasificacion se refiere a la filosofia de como programar.

® Imperativo. En él se le dice a la computadora qué hacer y cémo hacerlo, paso
a paso, por ejemplo la programacion estructurada.

® Orientado a objetos. Usado para crear objetos que tienen datos, es decir
atributos; también tienen funciones, métodos.

® Funcional. Se basa en el uso de funciones matematicas puras.

Por ejecucion:

® Compilados. Se escribe el codigo fuente y luego un programa especial llama-
do compilador lo traduce todo de una vez a lenguaje maquina, creando un archivo
ejecutable, haciendo que la ejecucion sea stper rapida.

® Interpretados. En él, un programa llamado intérprete lee el cédigo linea por
linea y lo ejecuta al momento. Es més lento, pero a menudo mas flexibles para
hacer pruebas rapidas.

Clasificacion de los lenguajes de programacion.

Estudiando

Dedica un tiempo a la lectura de las paginas y observar recursos didacticos co-
rrespondientes a los temas de Programacién estructurada en C++: Estructuras
de control. Realizar esta tarea, te facilitara el aprendizaje y realizar las actividades
que el profesor guiara en las siguientes sesiones. Apdyate en alguna estrategia de

lectura que te ayude a mejorar la comprensién lectora.

Editores de cédigo

El cédigo de programacion no puede ser escrito en un procesador de texto comun
como la aplicacién Microsoft Word, se necesita un editor de texto plano, como el
editor de cédigo, herramienta donde los desarrolladores escriben y organizan los
programas, pues estd disenado para facilitar el desarrollo de software mediante
funciones especificas para programar. Sus funciones mas comunes son:

® Resaltado de sintaxis coloreando palabras clave, variables y operadores.

® Autocompletado de cédigo, mientras se escribe sugiere comandos y ayuda
para evitar errores.

e Compilacién integrada, permitiendo transformar el cédigo fuente en un
ejecutable.

® Depuracién, esto es, que ejecuta el programa paso a paso para encontrar fallos.
® Gestion de proyectos, esto significa que el editor organiza varios archivos lo
que facilita la estructura del proyecto.

e Consola integrada que muestra resultados inmediatos.

Tipos de editores de cédigo

1. Editores basicos con soporte para programacion. Sus caracteristicas son ser
ligeros y Utiles para pequefios programas; pero tienen la desventaja de no incluir
un compilador. Entre ellos, estan el Notepad++, Sublime Texty Vim.

2. Entornos de Desarrollo Integrados (IDE). Estos editores son méas completos
porque incluyen editor, compilador, depurador y herramientas profesionales. Son
ideales para programacién estructurada porque simplifican el proceso de codifica-
cion, incluso en la jerga informética se les llama navaja suiza. Ejemplos de este tipo
de editor son Code::Blocks, Dev C++, Visual Studio, Eclipse CDT.

3. Editores de cédigo en linea (Online IDE). Estos permiten programar sin insta-
lar nada, directamente desde el navegador, como el Replit, JDoodle y OnlineGDB.

» Editor de cédigo Code::Blocks

Code::Blocks es un Entorno de Desarrollo Integrado (IDE) muy utilizado para pro-
gramar en los lenguajes Cy C++. Su disefio sencillo y funcional lo hace ideal para
estudiantes que se inician en el mundo de la programacién, ademas de ser gratuito
y de codigo abierto. Es totalmente configurable y es altamente extensible, es decir,
que estd basado en un marco de plugins, un componente de software que extiende
o afiade funcionalidades a la aplicacion principal sin alterar su cédigo base.

Se caracteriza por tener:

1. Instalacién sencilla. La descarga, preferiblemente la version que incluye el com-
pilador MinGW, puede ser del sitio oficial https://www.codeblocks.org/down-
loads/ o bien desde el QR que esté al lado. Posterior a la descarga, la instalacion
se ejecuta, se acepta la licencia y se sigue instrucciones manteniendo la configu-
racién predeterminada si asi se desea, si no, se configura manualmente desde
Settings, donde también puede cambiarse el entorno a espafiol, esto se hace en la
opcién Entorno > Ver > Internacionalizacion.

Conceptos clave @

Editor de texto. Herramienta don-
de se escribe el codigo con colores
para detectar errores facilmente.

Compilador. Es un programa que
traduce el codigo fuente de un len-
guaje de programacién de alto nivel
a uno de bajo nivel para que la com-
putadora lo entienda directamente.

Depurador. Programa que permi-
te a los desarrolladores identificar
y corregir errores en otro programa
al ejecutarlo de forma controlada,
ademés de examinar su comporta-
miento.

Recurso digital \
g ‘\\

Escanea el QR para descargar el ins-
talador de la aplicacién Code::Blocks.

Para saber mas...

Observa al video Conociendo el IDE
Code::Blocks en la estructura basica
de un programa en C++. Accede a él
escaneando el Cédigo QR.

Crear un
proyecto nuevo

2. Interfaz amigable. Presenta una organizacion clara del entorno, con una ven-
tana para el proyecto, un editor de archivos, una consola de salida y una barra
de herramientas para compilar y ejecutar el programa. Ademas de ser intuitivo y
facilita adaptarse rapidamente a la sintaxis de C++.

3. Compilador integrado. Permite compilar con un solo clic, generar archivos eje-
cutables y visualizar errores de compilacion de forma clara. La versién mas reco-
mendada es Code::Blocks con el compilador MinGW por ser compatible con Win-
dows. El IDE proporciona las herramientas de edicién, compilacién y depuracion,
y el compilador traduce el cédigo fuente a cédigo ejecutable.

4. Depurador visual. Una herramienta fundamental para aprender a pensar como
un desarrollador, pues ejecuta el programa linea por linea, muestra valores de
variables en tiempo real permitiendo identificar errores légicos, ademés coloca
breakpoints (punto de interrupcién), esto es que establece un marcador en una
linea especifica del codigo donde se desea que la ejecucion del programa se de-
tenga temporalmente.

5. Resaltado de sintaxis. Colorea palabras reservadas, identificadores, operado-
res y comentarios facilitando la lectura del cédigo y la detencién rapida de errores.

6. Plantillas de proyectos. Al iniciar un nuevo proyecto (programa) puede elegirse
hacer con Console Application o Empty Project. Con la primera opcién se puede

elegir C++ para que genere automaticamente el archivo main.cpp.

7. Multiplataforma. Este IDE funciona correctamente en diferentes sistemas ope-
rativos, por ejemplo puede ejecutarse en Windows, Linux o en macOS.

Pantalla de inicio del IDE Code::Blocks.

Flujo de Code::Blocks para la resolucién sistematica del problema:

Revisar
resultados

Compilar y
ejecutar de nuevo

Pasos para crear un nuevo proyecto en Code::Blocks

1. Abrir Code::Blocks.

2. Crear un nuevo proyecto desde Archivo > Nuevo > Proyecto > Consola de
aplicacion.

Ventana Nuevo proyecto en Code::Blocks.

3. Seleccionar el lenguaje de programacion en el que se desea codificar, puede
ser Co C++.

4. Asignar el nombre y ubicacién donde se guardara el proyecto. Con esto se ge-
nerarad una carpeta con el nombre asignado y dentro el archivo del proyecto con
extension ‘.cbp’.

5. Configurar el compilador: GNU GCC Compiler o MinGW Compiler (en Windows).

6. Abrir desde el panel lateral de Administracion el archivo principal con doble clic
sobre él. La aplicacion le asigna el nombre ‘main.cpp’.

7. Escribir o modificar el cédigo en la ventana Editor de texto.

Panel Administracion (derecha) y Editor de texto (izquierda) en Code::Blocks.

8. Guardar el archivo.

9. Compilar y ejecutar el programa con la tecla F? o desde la barra superior de
opciones con el comando Build and run (Construir y ejecutar, en entorno en idioma
espanol).

10. Verificar errores y corregirlos. Si hay errores, la aplicacion mostrara una lista
en la parte inferior con mensajes como expected ;" before '}’ token, entonces se
da clic en el mensaje para ir a la linea exacta del error, se corrige y se vuelve a
compilar.

Relaciénalo con... @

Code::Blocks en un nuevo proyecto
genera:

Archivos fuente principal (main.cpp)
es donde se escribe el programa.
Archivo de proyecto (.cbp) que
contiene configuracién interna del
proyecto como rutas y versién de
compilacién, archivos incluidos y pa-
rametros de depuracion.

Carpeta bin, que tiene los binarios
generados, dependiendo del sistema
puede haber bin/debug y bin/reléase.
En ellos estara el archivo ejecutable.
Carpeta obj, (.0), son archivos objeto
creados por el compilador durante la
traduccion.

Archivos temporales para uso inter-
no del compilador.

Archivo ejecutable final (.exe) que
se genera mediante el proceso de
compilaciéon y enlazado (linking) rea-
lizado por el compilador.

Ventana para configurar el
Compilador en Code::Blocks.

Progresion 3

3.2 Estructura basica de un programa en C++

Logo de lenguaje C++.

DEPURACION del
programa si se
producen errores de
ejecucién

Con errores

=

Diagrama del proceso de creacion
de un programa o aplicacion.

Programacion estructurada

En el tipo de lenguaje de programacién estructurada, los programas se disefian de
arriba hacia abajo (top-down) jerdrquicamente, usando solo un conjunto restringi-
do de estructuras de control en cada nivel, instrucciones secuenciales, estructuras
selectivas y estructuras repetitivas. Cuando esto se hace de forma adecuada el
programa resulta muy facil de entender, depurar y modificar.

La programacién estructurada es una forma de construir software de manera or-
denada y clara, es como construir con bloques de LEGO, en lugar de tener un
montoén de piezas desordenadas. Los programas deben estar dotados de una es-
tructura y escribirse de acuerdo con las siguiente reglas:

® Tener disefio modular.
® Moddulos disefados en modo ascendente.
e Codificar cada médulo utilizando los tres tipos de estructuras:

1. Secuencia: ejecutar instrucciones una después de otra, como seguir
una receta.

2. Seleccién: tomar decisiones, por ejemplo, si llueve, usa paraguas; si
no, usa lentes.

3. Iteracion: repetir tareas, como batir la mezcla de un pastel 100 veces.

Metodologia para codificacion de un programa

El desarrollo del software requiere atender la gestién, disefio, desarrollo e implan-
tacion para lograr su calidad. En |a etapa de disefio se lleva a cabo la programacion
de computadoras contemplando las actividades de planeacién, codificacion, prue-
ba y documentacion. Para ello se precisa de una metodologia que atienda el pro-
ceso de transferencia de las secuencias logicas de un algoritmo a un determinado
lenguaje de programacién, lo que a su vez solicita el cumplimiento de los pasos:
codificacion del programa, compilacién y ejecucion, y verificacion y depuracién.

1. Codificacién de un programa

Es la escritura del algoritmo en un lenguaje de programacion desarrollado en las
etapas precedentes. El cédigo puede ser escrito con igual facilidad en un lenguaje
o en otro. Para realizar esta conversion se deben sustituir las palabras reservadas en
espafiol por sus homoénimos en inglés y las operaciones e instrucciones indicadas
en lenguaje natural, expresarlas en la sintaxis del lenguaje de programacion en uso.

2. Compilacion y ejecucion

Una vez que el algoritmo mediante un programa editor se codifica en un lenguaje,
se genera un programa fuente y al colocarlo en la memoria de la computadora, es
decir, se compila, se convierte el programa fuente en un archivo de programa. Si
tras la compilacién se presentan errores (errores de compilacién) en el programa
fuente, es necesario regresar a editar el programa, corregir los errores y compilar
de nuevo. El proceso debe repetirse hasta que no haya errores.

La compilacién sin errores da como resultado el programa objeto, este archivo
aln no es ejecutable; para ello se pide al Sistema Operativo que lo enlace con las
bibliotecas del compilador. Este Ultimo proceso de montaje produce el programa
ejecutable, que “corre” con solo teclear su nombre desde el sistema operativo.

3. Verificacién e implementacién

Es el proceso de ejecucion del programa con distintos datos de entrada, que de-
terminaran si el programa tiene errores (bugs). Para ello se debe hacer pruebas de
datos con valores normales y extremos de entrada que comprueben los limites del
programa y valores de entrada que comprueben aspectos especiales del programa.

Lenguaje C++

C++ es un lenguaje de alto nivel increiblemente poderoso y rapido que se usa para
todo: sistemas operativos, como Windows o macOS, para videojuegos AAA, aplica-
ciones de escritorio, e incluso en la robdtica y la exploracion espacial.

Este lenguaje combina la programacién estructurada y la orientada a objetos, con-
virtiéndolo en uno de los lenguajes maés versatiles y utilizados en la industria. Por su
capacidad para controlar eficientemente recursos de la computadora, sigue siendo
uno de los lenguajes preferidos en videojuegos, software cientifico, control de hard-
ware, simulaciones y sistemas operativos.

Sintaxis y elementos basicos

Asi como un texto formal tiene introduccién, desarrollo y conclusién, un programa
estd formado por partes definidas que permiten que el compilador interprete y eje-
cute las instrucciones del programador. En esta secuencia se describe el lenguaje
C++, uno de los mas utilizados en la ensefianza de la programacién estructurada y
base de muchos otros lenguajes modernos. Un programa basico en C++ luce asi:

#include <iostream>
using namespace std;

int main() {
cout << “Hola, mundo!” << endl;
return 0;

> Sintaxis. Es el conjunto de reglas que indican como deben escribirse las instruc-
ciones para que el lenguajes las entienda. Por ejemplo, en C++, es estricta la regla
de que si un caracter, simbolo o palabra clave estd mal escrito o colocado en un
sitio, el programa no compilara.

> Directivas de preprocesador (#include). Indica al compilador que se incluira
una biblioteca; estas funcionan como caja de herramientas que agregan funciones
ya programadas listas para usarse. El ejemplo se usa el iostream, pero hay otras
mas completas:

Progresion 3

Relaciénalo con... @

Los videojuegos AAA son titulos de
alto presupuesto, desarrollados por
grandes editoriales en lenguaje C++;
se caracterizan por sus altos costes
de produccién y marketing y el gran
nimero de personas que trabajan en
ellos. Por ejemplo Grand Theft Auto
V, Elder Ring, Fortnite y Call of Cuty:
Warzone.

Progresion 3

Relaciénalo con... {§}

El manipulador endl inserta un salto
de linea en el codigo. Y este: >> es
el operador de extraccién, es decir,
extrae lo que el usuario teclea y lo
guarda en una variable.

¢Sabias qué...?

Cuando se usaran datos de tipo ca-
racter (letra, nimero o simbolo) se
usan comillas simples: * . Para guar-
dar datos de cadena de texto se usan
" " también debe
incluirse la libreria #include <string>.

comillas dobles:

» Espacio de nombres (namespace). C++ es un lenguaje muy grande, lleno de
funciones y objetos; para evitar que sus nombres choquen entre si, se organizan
en namespaces. También permite usarlos sin reescribirlos en cada llamado. En el
ejemplo se utiliza: using namespace std; que contiene las herramientas esenciales:

® cout - salida de datos
® cin - entrada de datos
® string -» manejo de textos

» Funcién principal. Todo programa en C++ debe tener una funcién llamada
main() pues es el punto de inicio donde el programa comienza a ejecutarse. Si-
guiendo con el ejemplo:

® int-indica que la funcién regresa un valor entero al sistema operativo.

® return 0; - significa que el programa terminé correctamente.

® {}-lasllaves delimitan dénde empiezan y terminan las instrucciones
del programa.

» Instrucciones y declaraciones de sentencias. Dentro del main() van todas
las instrucciones a ejecutar. Cada linea termina con punto y coma (;) para indicar
el final de una instruccién, si se olvida, el programa marcara error. En el ejemplo
aparece: cout << “Bienvenido a C++" << endl;

Estructura de programa en C++.

Variables y tipo de datos

El espacio en memoria donde se almacena un dato en el programa son las varia-
bles. Pero para usarlas, primero se deben declarar, esto significa indicar su nom-
bre y qué tipo de datos guardara.
> Sintaxis general de la declaracién de variable es:
® Tipo nombre;
® Tipo nombre = valor;

» Reglas para nombrarlas:

® No puede iniciar con nimero.
No deben incluir espacios.
Deben evitar acentos y caracteres espaciales.
No deben llamarse igual que las palabras clave del lenguaje.
Correcto - edadAlumnos , promedio_final , total2
Incorrecto - 2edad , promedio final , c++ , if

Tipos de datos mas comunes en C++

Ejomplo de declaracién

int NuUmero enteros intedad = 17;

NG decimal
float Hmeros con decimales float pi = 3.1416;

(precision simple)

double Decimales de mayor precisién double gravedad = 9.81;
char Un solo caracter char letra = 'A’;
bool Verdadero o falso bool activo = true;
string Cadenas de texto string nombre = “Claudia”;

Entrada y salida de datos

Dos procesos fundamentales para la comunicacion entre un sistema de informa-
cion y el mundo exterior, permitiendo que el usuario interactle con el programa y
vea el resultado de las operaciones son la entrada (input) que es la informacién que
el programa recibe y la salida (output) es decir, el resultado que el programa envia
después del procesamiento. En lenguaje C++ se usa la sintaxis:
® cout~Objeto de salida de consola. Por ejemplo:
cout << "Edad: " << edad << endl;
® cin »Objeto de entrada de consola, por ejemplo:
cin >> edad;

Para saber mas... @

Escanea el codigo QR para consultar
una infografia donde se explica la je-
rarquia de operaciones en C++.

Operadores en C++

Los operadores permiten realizar célculos, comparaciones y decisiones dentro de
un programa. Son fundamentales para las estructuras control. Hay cuatro tipos de
operadores:

1. Operadores aritméticos.
Permiten hacer los calculos matematicos basicos: suma (+), resta (-), multiplicacion
(*), divisién (/), modulo o residuo (%).

2. Operadores relacionales.

Se usan para comprar valores, su resultado siempre es true o false: igual que (==),
diferente de (I=), menor que (<), mayor que (>), menor o igual (<=), (>=) mayor o
igual.

3. Operadores légicos.
Permite unir comparaciones: dos datos verdaderos (AND - &&), al menos uno ver-
dadero (OR - ll) invierte el valor de verdad (NOT - 1).

4. Operadores de asignacién.
Hay dos formas: asignar =; operary asignar +=, -=, *=, /=,

#include <iostream>
using namespace std;

int main() {
int edad;
cout << “Ingresa tu edad: ”;
cin >> edad;

if (edad >= 18) {

cout << “Eres mayor de edad.” << endl;
} else {

cout << “Eres menor de edad.” << endl;

3

return 0;

3.3 Estructuras de control

Las estructuras de control como su nombre indica controlan el flujo de ejecucién
de un programa y aqui es donde la programacién se vuelve poderosa, con las
estructuras de control selectivas y repetitivas que permiten que un programa no
sea una simple secuencia lineal de instrucciones, sino que tome decisiones y repita
acciones segun las condiciones establecidas. Aunque, las estructuras secuenciales
son fundamentales por ser la base de cualquier algoritmo.

Estructuras secuenciales

Este tipo de estructuras permiten la ejecucién de instrucciones en un orden especi-
fico y légico, su principal caracteristica radica en que los hacen los programas mas
faciles de entender, depurar y mantener por ejecutar una instruccién tras otra,
en el orden en que aparecen en el cédigo sin saltos ni bifurcaciones. Aunque en
programas complejos se combinan con estructuras condicionales y bucles.

La secuencia es crucial para tareas simples y para definir el flujo basico de accion
en cualquier programa.

Codigo en C++

. int main() {
Inicio . .,
» instruccién(es);
Instruccién(es)
. return 0;
Fin ;

El siguiente cédigo en lenguaje C++ es un ejemplo de estructuras secuenciales,
su problema y algoritmo en PSelnt se encuentran en el recurso digital de al lado:

#include <bits/stdc++.h>
using namespace std;

int main() {
float mouse=0,audifonos=0,tapete=0,iva=0,total=0;
cout << “Precio del mouse: ”;
cin >> mouse;
cout << “Precio de los audifonos: ”;
cin >> audifonos;
cout << “Precio del tapete: ”;
cin >> tapete;

total = (mouse + audifonos + tapete)*1.16;
cout << “Total a pagar: ” << fixed <<
setprecision(2) << total << endl;

return 0;

Progresion 3

Recurso digital \
u igi a

Escanea el QR para descargar el ar-
chivo con Ejemplos de Estructuras
de control. En él se encuentran los
problemas y algoritmos en PSelnt de
todos los ejemplos de la progresion.

Para saber mas... @

Observa el video Estructura condi-
cional If en C++ para profundizar en
la explicacion de tu profesor. Accede
a él escaneando el Cédigo QR.

Para saber mas... @

Observa el video explicativo Estruc-
tura condicional If else en C++ y re-
fuerza el tema visto en clase. Accede
a él escaneando el Cédigo QR.

Estructuras condicionales

Como se vio en la secuencia de PSelnt, las estructuras de control condicionales o
de seleccién se usan para que el programa elija un camino. El flujo puede ser de
tres formas: if, if-else, if-else-if.

1. Condicionales simples - Si (if). Son estructuras selectivas simples que ejecutan
un bloque de cédigo solo si la condicién es verdadera.

Codigo en C++

iflcondicién(es)){
instruccién(es);

Si (condicién(es)) entonces
Instruccién(es)
Fin del si }

Ejemplo de selectiva simple. Tanto como el problema como el algoritmo en PSelnt
estan en el recurso digital de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
int edad = 0;

cout << “sCual es tu edad? “;
cin >> edad;
if (edad > 15){
cout << “Acceso permitido” << endl;

3

return 0;

2. Condicionales dobles - Si... si no... (if-else). Llamadas también selectivas dobles.
Ejecuta un bloque si la condicién es verdadera y un bloque diferente si es falsa.

Codigo en C++

Si (condicién(es)) entonces
Instruccién(es)
De lo contrario Si (condicién(es))

if(condicién(es)){

instruccién(es);

Jelsef
entonces . ..
L, instruccién(es);
Instruccién(es) }
Fin del si

Ejemplo de selectiva doble. El problema y el algoritmo en PSelnt se encuentran en
el recurso digital de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
float precio = 0, total = 0;
char credencial = ° °;
cout << “Cual es el precio del libro? “;
cin >> precio;
cout << “;Tienes credencial de estudiante? (S=si,
N=no): “;
cin >> credencial;
if (credencial == ‘s’ || credencial == ‘S’) {
total = precio * 0.9; //Aplicar 10% de desc.
} else {
total = precio;
3
cout << “Total a pagar: << fixed <<
setprecision(2) << total << endl;

return 0;

«

3

Ejercitando mis conocimientos

Para reforzar tu aprendizaje de las estructuras condicionales simple y doble, realiza
en clase con la gufa de tu profesor la siguiente actividad.

1. Retoma el algoritmo que disefiaste en PSeint del problema de estructuras sim-
ple y doble en la actividad Ejercitando mis conocimientos pag. 41.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E01 y comparte con tu profesor
por el medio que indique.

3. Condicionales dobles anidadas - (if-else-if). Las selectivas dobles anidadas se
usan para encadenar multiples condiciones, es como una escalera. El programa
revisa la primera condicién; si es falsa, revisa la segunda, y asi sucesivamente. En
estas estructuras uno de los dos bloques se ejecutara si o si.

Codigo on C++

Si (condicién(es)) entonces
Instruccion(es)
De lo contrario Si (condicién(es))
entonces
Instruccion(es)
De lo contrario
Instruccion(es)
Fin del Si

if(condicién(es)){
instruccién(es);
Jelse if(condicién(es)){
instruccién(es);
Jelsef

instruccion(es);

¢Sabias qué...? m

Otro elemento que puede agregar-
se en un programa son comentarios
que el desarrollador coloca y que el
compilador ignora. Hay dos formas
de agregar la nota:

1. // esto es una nota de una linea.
2. /*instruccion que lee dato*/.

Para saber mas... @

Observa el video Estructura condi-
cional If else if en C++ para ampliar
la explicacion de tu profesor. Accede
a él escaneando el Cédigo QR.

Ejemplo de selectiva doble anidada. Su problema y su algoritmo en PSelnt se en-
cuentran en el recurso digital de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
int nivel 0;
char reto C Y
cout << “Cual es el nivel de jugador? ”;
cin >> nivel;
cout << “;Hace el reto diario? (S=si, N=no): ”;
cin >> reto;
if (nivel >= 20){

if (reto == ‘s’ || reto == ‘S’){
cout << “Skin Epica” << endl;
} else {
cout << “Skin Rara” << endl;
b
} else {
if (reto == ‘s’ || reto == ‘S’){
cout << “Caja Items” << endl;
} else {
cout << “Monedas x100” << endl;
b
) return 0;

Ejercitando mis conocimientos

Para reforzar tu aprendizaje de las estructuras selectivas Anidadas, realiza en clase
con la guia de tu profesor la siguiente actividad.

1. Retoma el algoritmo que disefiaste en PSelnt del problema de estructuras con-
dicionales Anidadas en la actividad Ejercitando mis conocimientos pag. 44.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E02 y comparte con tu profesor
por el medio que indique.

3. Condicional Selector (switch-case). Es una alternativa al if-else-if, pero es mas
limpia cuando se quiere comparar el valor de una sola variable contra muiltiples
casos exactos. En esta estructura el ‘break;’ es crucial, es el else del switch, se
ejecuta si ninglin caso coindice, pero si se olvida, el programa ejecutara ese caso y
todos los que le siguen serd un llamado fall-through.

Codigo en C++

En caso de (op)
Caso op:
Instruccion(es)
Interrumpir
Caso op2:
Instruccion(es)
interrumpir
Caso defecto:
Instruccion(es)
interrumpir
Fin del caso

switch (op){
case 1:
instruccién(es);
break;
case 2:
instruccién(es);
break;
default:
instruccioén(es);

Ejemplo de selectiva simple, su problema y algoritmo en PSelnt se encuentran en
el recurso digital de la pagina 71.

#include <bits/stdc++.h>

using namespace std;

int main() {
int reaccion =
cout << °

0;
‘.Qué reaccioén deseas pulsar? (1-5): 7;
cin >> reaccion;

)

switch (reaccion) {

case 1:
cout <<
break;

case 2:
cout <<
break;

case 3:
cout <<
break;

case 4:
cout <<
break;

case 5:
cout <<
break;

default:
cout <<

“Me gusta” << endl;

“Me encanta” << endl;

“Me divierte ” << endl;

“Me asombra ” << endl;

“Me entristece ” << endl;

“Reaccidén no valida” << endl;

3 return 0;

Progresion 3

Para saber mas...

Accede y observa el video Estructura
condicional Switch-case en C++ que
profundiza en la explicacién del tema.
Hazlo escaneando el Codigo QR.

Para saber mas...

Observa el video Estructura repetiti-
va For en C++ y conoce méas de lo
explicado en clase. Accede a él es-
caneando el Cédigo QR.

Estructuras repetitivas

Las también conocidas como bucle o ciclo, es una construccién que ejecuta un con-
junto de instrucciones varias veces hasta que se cumple con una condicién especi-
fica. Esto ayuda a automatizar tareas que se repiten, reduciendo la necesidad de
escribir el mismo cédigo una y otra vez.

Los ciclos més comunes son while, for y do-while.

1. Repetitiva Para (for). El bucle perfecto cuando se sabe exactamente cuantas
veces se quiere repetir algo, a esto se le llama controlado por contador. Su sintaxis
tiene 3 partes:

® |Inicializacion: se ejecuta una sola vez al empezar. Aqui se crea el contador, inti=0

e Condicién: se revisa antes de cada repeticion. Si es true, el bucle se ejecuta, si
es false, el bucle termina.

® Incremento: se ejecuta después de cada repeticion. Aqui i++ suma 1 a i.

Algoritmo Cédigo en C++

Para(inicio;condicién(es);comporta- for(inicio;condicién(es);comporta-
miento) miento){
Instruccion(es) 1 instruccién(es) 1;
Instruccion(es) n instruccién(es) n;
Fin Para }

Ejemplo de selectiva simple. Tanto el problema como el algoritmo en PSelnt se en-
cuentran en el recurso digital de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
int dias=0,1i=0;
float likes=0,promedio=0;

¢ ”

cout << “sCuantos dias deseas evaluar? ”;
cin >> dias;
for (i=1 ; i <= dias ; i++){
cout << “Porcentaje de likes dia ” << 1 << “: 7;
cin >> likes;
promedio += likes;
3
promedio = promedio / dias;
cout << “Promedio general de likes: ” << fixed <<
setprecision(2) << promedio << endl;
return 0;

3

Ejercitando mis conocimientos

Para reforzar tu aprendizaje de las estructuras repetitiva Para, realiza en clase con
la guia de tu profesor la siguiente actividad.

1. Retoma el algoritmo que disefaste en PSelnt del problema de estructura repe-
titiva Para, de la actividad Ejercitando mis conocimientos péag. 52.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales sequidas de _PC_P3_E03 y comparte con tu profesor
por el medio que indique.

2. Repetitiva Mientras (while). Esta estructura sirve cuando no se sabe cuéntas
veces se repetird, pero se sabe la condicion que debe cumplirse para seguir eje-
cutandose. Es un bucle controlado por condiciéon, es decir, que revisa la condicion
antes de entrar en él.

Codigo en C++

Mientras (condicidn(es)) Haz while(condicidn(es)){
Instruccion(es) instruccién(es);
Fin Mientras }

Ejemplo de estructura repetitiva mientras. El problema y el algoritmo en PSelnt se
encuentran en el recurso digital de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
int dias=1,meta=0,pasosDia=0,acumulado=0;

‘ «

cout << “;Cudl es tu meta de pasos? “;
cin >> meta;

while (acumulado < meta){
cout << “Pasos dia “
cin >> pasosDia;
acumulado += pasosDia;
dias++;

«]

<< dias << “: “;;

3

3 ¢

cout << “jMeta alcanzada en “ << dias-1 << “ dias!” << endl;

return 0;

Progresion 3

Para saber mas... @

Observa el video Estructura repetiti-
va While en C++ y conoce mas de
lo explicado en clase. Accede a él
escaneando el Cédigo QR.

Para saber mas... @

Accede y observa el video Estructura
repetitiva Do while en C++y conoce
mas de su funcionamiento. Hazlo es-
caneando el Cédigo QR.

3. Repetitiva Haz...Mientras (do-while). Esta estructura iterativa es casi igual al
while, pero con una diferencia clave, la condicion se revisa al final del bucle. Esto
garantiza que el bloque de cédigo se ejecutard al menos una vez.

Codigo en C++

Haz dof
Instruccion(es) instruccién(es);
Mientras(condicidn(es)) Iwhile(condicién(es));

Ejemplo de estructura repetitiva Haz mientras. El problema y el algoritmo en PSelnt
se encuentran en el recurso de la pagina 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
int NIP=0,NIP2=0;

9

string nombre="";

cout << “;Cual es tu nombre de usuario? ”;
cin >> nombre;

cout << “Introduce el NIP secreto: ”;
cin >> NIP;

cout << “Accede a UltraApp” << endl;

do{
cout << “NIP: ”;
cin >> NIP2;
Jwhile (NIP != NIP2);

2

cout << “Acceso concedido. Bienvenid@ ” << nombre
<< “ a UltraApp”<< endl;

return 0;

Ejercitando mis conocimientos

Para reforzar tu aprendizaje de las estructuras repetitiva Haz mientras, realiza en
clase con la gufa de tu profesor la siguiente actividad.

1. Retoma el algoritmo que disefiaste en PSelnt del problema de estructura repeti-
tiva Haz mientras, de la actividad Ejercitando mis conocimientos péag. 48.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E04 y comparte con tu profesor
por el medio que indique.

Concretando mis conocimientos

Con el objetivo de aplicar lo aprendido a lo largo de la progresién y demostrar
cémo codificar instrucciones en lenguaje C++ utilizando condicionales y bucles,
de manera colaborativa resuelve la siguiente actividad:

1. Relinete con tu equipo de trabajo.

2. Descarguen el archivo de indicaciones mediante el QR de al lado.

a. Apliquen las fases del pensamiento computacional al problema plan-
teado y organicenlas en un documento de Word. Redacten de manera
clara cada paso que siguieron para darle solucion.

b. Codifiquen el algoritmo en lenguaje C++ en el editor Code::Blocks.

c. Compilen y ejecuten el programa.

d. Verifiquen errores y en el caso de haberlos, corrijanlos.

3. Guarden en una misma carpeta los archivos:
a. Documento de las fases del pensamiento computacional. Agreguen al
final el nombre de los integrantes del equipo.
b. Archivos de cédigo y ejecutable generados.

4. Compriman la carpeta utilizando como nombre sus iniciales separadas por guion
medio y seguidas del nombre _PC1_P3_ CMC y compartan con su profesor por el
medio que indique.

Instrumento de evaluacién
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluard tu reporte escrito.

| ndiedor | Si_ | No| Puntos

Aplican correctamente las fases del

. . 1
pensamiento computacmnal
Utiliza las librerias adecuadas 1
Declara correctamente cada variable de 1
acuerdo con el tipo de datos
Codifican las instrucciones en C++ 2
Seleccionaron las estructuras de control
adecuadas para resolver de manera éptima el 2
problema
Utilizan los operadores aritméticos, l6gicos y 1
de relacién de acuerdo con el algoritmo
No presenta errores de compilacion 1
Resuelve de manera 6ptima el problema 1

mediante lenguaje C++

Recurso digital \
)

Escanea el QR para descargar el ar-
chivo con las indicaciones para reali-
zar la actividad.

o3

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en la Progresion 3, realiza la
actividad interactiva, ingresa a ella
escaneando el cédigo QR.

. s

Programacion
estructurada en C++

Codifica en C++ arreglos unidimensionales para almacenar, procesar y manipular conjunto de datos, determinando
la ejecucién de instrucciones de manera organizada y eficiente en la resolucién de problemas.

£
o
v
o
1 S
o
)
T
[

Tiempo estimado: 6 horas
Tus metas seran:
® |dentificar la utilidad de los arreglos unidimensionales en la resolucién de problemas que requieren manejar

mdltiples valores del mismo tipos de dato.

® Representar soluciones a problemas cotidianos y académicos mediante el disefio de algoritmos que emplean
arreglos unidimensionales.

e Codificary ejecutar programas en C++ que utilizan arreglos unidimensionales para almacenar, recorrer y procesar
datos (suma, promedio, méximo, minimo, busqueda lineal y ordenamiento).

Recuperando lo que sabemos

Imagine que eres parte del equipo de desarrolladores de un nuevo videojuego llamada “Pixel Quest: data Run”. El sistema
del juego sufrié una falla: los cédigos de puntuacion de los jugadores se perdieron, pero quedaron fragmentados dispersos
que tu deberas reconstruir utilizando tus conocimientos de programacion.

El sistema logré guardar el puntaje de 5 jugadores en variables separadas que harias para resolver lo siguiente:

1. ¢Coémo podrias calcular el promedio de los puntajes usando solo variables y operaciones basicas?

2. ;Qué estructura repetitiva podrias usar para encontrar el puntaje mas alto?

3. Sihubiera 100 jugadores, ;qué problema tendrias al usar una variable para cada uno?

4. ;Qué ventajas tendrias si todos estos valores estuvieran dentro de una sola estructura de datos?

m a

Progresion 4

Reactivando mis conocimientos

Cada vez que guardas objetos en un lugar especifico, decides dénde colocarlos o acomodas algo siguiendo un orden, estés
usando la misma légica basica de los arreglos unidimensionales: una fila de elementos donde cada cosa ocupa una posicion.

Imagina este escenario:

Al llegar a tu habitacién, vacias tu mochila y colocas lo que traes en una repisa con compartimentos colocados en fila: libros,
cuadernos, plumas, audifonos, llaves, etc. Cada objeto queda en un espacio diferente, uno junto al otro. Tu objetivo es tener
tus cosas acomodadas de forma que puedas encontrarlas facilmente cuando las necesites.

Para lograrlo, necesitas pensar en un procedimiento paso a paso: como decides qué espacio ocupara cada objeto, como
buscas algo cuando lo necesitas y cémo reacomodas todo si quieres dejarlo ordenado.

1. En tu cuaderno o documento digital, escribe los pasos que seguirias para acomodar tus objetos en una repisa de una sola
fila. Es decir, como decides en que orden pondras los objetos, como reacomodas todos los objetos si quieres que queden
ordenados por tamafio, importancia o frecuencia de uso.

2. Identifica los elementos del problema:
® Datos de entrada: ;Qué cosas tienes que acomodar? (libros, llaves, audifonos, lapices, etc.), ;Traes nuevos
objetos que debas colocar?
® Proceso: ;Qué reglas sigues para colocarlos?, ; Los acomodas del més grande al mas pequefio?, ;Pones primero
lo que usas mas seguido?, ;Buscas posicion por posicion cuando buscas un objeto?
e Salida: ;Como queda tu repisa al final? . Una fila clara y ordenada donde cada cosa tiene una posicion conocida
y puedes acceder rapido a cualquier objeto.

3. Reflexiona y responde en tus notas:
e ;Qué parte de tu procedimiento crees que un programa podria automatizar?
e ;Coémo te ayudaria usar un entorno de desarrollo para simular tu “repisa” antes de programarla?
e ;Qué ventajas tendria poder observar cémo se ejecutan tus pasos uno por uno en una simulaciéon?

Comparte en clase tus pasos y reflexiones con tus compafieros y el profesor. Analicen juntos cuél de los procedimientos
fue més claro, ordenado y eficiente, y comenten como ese mismo proceso podria transformarse en un algoritmo que use
arreglos unidimensionales.

c m

4.1 Estructuras de datos

Para saber mas...

Escanea el codigo QR y observa el
video Primer acercamiento a estruc-
turas de datos.

¢Sabias qué...?

Una estructura de datos no solo al-
macena informacién, sino que tam-
bién define cémo se accede, orga-
niza y modifica.

Por ejemplo, una pila (stack) sigue
el principio LIFO (Last In, First Out),
ideal para tareas como deshacer ac-
ciones en editores.

Las estructuras de datos constituyen un componente esencial en el &mbito de la
informética y la programacion, ya que permiten organizar, almacenar y gestionar la
informacién de forma eficiente.

En términos generales, se entiende por estructura de datos una manera de re-
copilar datos y de definir relaciones entre ellos, asi como los procedimientos para
operar sobre esos datos.

Las estructuras de datos comprenden diversos tipos, entre los que se encuentran
los arreglos (arrays), las listas enlazadas (linked lists), las pilas (stacks), las colas
(queues), los arboles (trees), los grafos (graphs), las tablas hash (hash tables)y los
vectores, entendidos como estructuras dindmicas.

Representacion gréfica de estructuras de datos

Cada estructura de datos se adapta a determinados tipos de problemas en los
que es necesario almacenar elementos, acceder a ellos, insertarlos, borrarlos o
recorrerlos de forma eficiente.

Las estructuras de datos se emplean con el objetivo principal de organizar los
datos contenidos dentro de la memoria de la computadora. Asi, la experiencia
con estructuras de datos comienza desde el momento que en los programas usan
variables de tipos primitivos (char, short, int, float, etc).

El correcto uso de una estructura de datos adecuada contribuye a optimizar el
rendimiento de programas, tanto en términos de tiempo (por ejemplo, tiempos de
busqueda, acceso o insercién) como de espacio (uso de memoria).

Por ejemplo, un arreglo permite acceso directo (aleatorio) a sus elementos con
complejidad constante, lo cual lo hace util cuando se conoce de antemano el nu-
mero de elementos y se pretende un acceso rapido. Por tanto, es habitual que, an-
tes de disefnar un algoritmo, se seleccione la estructura de datos més conveniente
para la operacion que se desea llevar a cabo.

Arreglos unidimensionales

En programacion, un arreglo unidimensional, también conocido como vector o arre-
glos, es una estructura de datos que permite almacenar multiples elementos del
mismo tipo en ubicaciones contiguas de memoria. Esta caracteristica facilita el ac-
ceso rapido a cualquier elemento mediante su indice, lo que permite operaciones
eficientes como lectura, escritura y recorrido.

En lenguajes como C++, los arreglos son una herramienta fundamental para manejar
grandes cantidades de datos. Son especialmente Utiles cuando se necesita almace-
nar multiples valores en una sola variable, como nimeros, cadenas de texto o incluso
tipos de datos més complejos. Una de las principales ventajas de los arreglos es que
permiten organizar y acceder a la informacion de forma ordenada.

Por ejemplo, si se tiene la necesidad de crear un programa para registrar las califi-
caciones obtenidas por los estudiantes en un examen. Si se usaran variables indivi-
duales para cada alumno, el programa se volveria poco practico, especialmente si el
grupo es numeroso, ya que habria que declarar una variable para cada calificacién.
En cambio, utilizando un arreglo unidimensional, se pueden almacenar todas las
calificaciones de manera mas ordenada y eficiente, ya que cada posicién del arreglo
representaria la calificacion de un estudiante diferente. De esta forma, el uso de
arreglos facilita el manejo, consulta y procesamiento de multiples datos del mismo
tipo sin necesidad de declarar una variable por cada valor.

En C++, los arreglos tienen una limitacién importante: su tamario debe definirse al
momento de la declaracién. Esto significa que el tamario seré fijo durante la ejecu-
cién del programa aun y cuando no se necesiten todas las casillas de este. Existen
otras estructuras de datos que si permiten que su tamafio sea aumentado o dismi-
nuido de manera dindmica segln los elementos que se ingresen o se eliminen de
ellos como, por ejemplo: colas, pilas, listas enlazadas, arboles, grados, etc.

» Declaracion

En C++ la sintaxis para declarar un arreglo unidimensional es el siguiente:
tipo_de_dato nombre_identificador [tamano];

Interpretacién:

® tipo_de_dato. Indica el tipo de dato que almacenara el arreglo. Puede ser int
para nimeros enteros, float para nimeros decimales, char para caracteres, o incluso
string para cadenas de texto.

® nombre_identificador. Es el nombre que tendré el arreglo. Debe seguir las mis-
mas reglas que las variables: comenzar con una letra o guion bajo, no usar espacios
ni caracteres especiales, no ser una palabra reservada, y ser descriptivo.

Estudiando

Dedica un tiempo a la lectura de las paginas correspondientes a los temas de
Estructuras de datos. Realizar esta tarea, te facilitara el aprendizaje y realizar las
actividades que el profesor guiard en las siguientes sesiones. Apdyate en alguna
estrategia de lectura que te ayude a mejorar la comprension lectora.

Progresion 4

Para saber mas...

Escanea el codigo QR y observa el
video Arreglos unidimensionales en
C++.

¢Sabias qué...?

Las colas (queues) son estructuras de
datos que siguen el principio FIFO
(First In, First Out).

Se usan en sistemas como la gestién
de procesos en sistemas operativos
o en la impresién de documentos.

Progresion 4

¢Sabias qué...?

Tamaio Fijo en arreglos.

En muchos lenguajes de programa-
cién de tipado estético (como C++ o
Java), una vez que declaras un arre-
glo, su tamano es fijo y no se puede
cambiar dinamicamente durante la
ejecucion del programa.

Si necesitas mas espacio, debes
crear un arreglo completamente
nuevo y copiar los datos.

Conceptos clave

Indexacién. Proceso de acceder o
modificar elementos individuales
dentro de un arreglo (también llama-
do array) mediante un nimero indice
que identifica su posicion.

® [tamaiio]. Entre corchetes se especifica el nimero de elementos que contendra
el arreglo. Este valor debe ser un nimero entero positivo y es obligatorio al declarar
arreglos estaticos.

Veamos un ejemplo de declaracién de un arreglo.

Representacion de la sintaxis de un arreglo unidimensional.

Interpretacion:

® float. Indica el tipo de dato que almacenard el arreglo, en este caso nimeros
decimales.

® grupo. Es el nombre del arreglo, que nos permitira identificarlo y acceder a sus
elementos.

® [10]. Representa el tamafio del arreglo, es decir, la cantidad de elementos que
puede almacenar (en este caso, 10 valores de tipo float).

Al declarar un arreglo en C++, el programador esta reservando un bloque de me-
moria contigua en la computadora. Este espacio se divide en posiciones, cada una
destinada a almacenar un valor del tipo de dato especificado en la declaraciéon.

Representacion gréfica del arreglo en memoria.

En el lenguaje C++, los arreglos inician su indexacion en O por razones relacionadas
con la forma en que se calcula la posicién de cada elemento en memoria. Es decir,
el primer elemento estara en el indice Oy el ltimo seré en el indice n-1. Donde n es
el tamario del arreglo.

Esta estructura permite realizar distintas operaciones, como:
® Acceder a un elemento especifico mediante su indice.
® Modificar el valor almacenado en una posicion.

® Recorrer el arreglo para aplicar célculos o mostrar datos.

Para ilustrar de manera mas precisa el funcionamiento de los arreglos y su aplicacion
en contextos de la vida cotidiana, puede considerarse el siguiente ejemplo: supdn-
gase que una persona acude a un gimnasio que dispone de diez casilleros. En este
caso, el primer casillero no se identifica con el nimero 1, sino con el 0, dado que
dicho nlimero representa la distancia desde el punto de inicio. Asi, el casillero O se
encuentra inmediatamente en la entrada (sin desplazamiento alguno), el casillero 1
estad ubicado a un paso de distancia, el casillero 2 a dos pasos, y asi sucesivamente.
De este modo, el indice refleja el nimero de posiciones que es necesario avanzar
desde el inicio para acceder al elemento correspondiente.

» Insercion de datos

Cuando el arreglo ya esté declarado, es posible asignar valores a cada posicién. Es-
tos valores deben coincidir con el tipo de dato definido en la declaracién del arreglo.

Por ejemplo, si el arreglo fue declarado como int, tnicamente puede almacenar
ndmeros enteros; intentar guardar cadenas de texto en un arreglo de tipo numérico
serfa incorrecto y generaria errores.

La asignacién de valores puede realizarse de varias maneras:

1. Asignacién individual: se indica el indice int numeros[5];
exacto donde se almacena el dato. numeros[0] = 10;

numeros[1l] = 20;

Representacion gréfica del arreglo numeros en memoria por asignacion individual.
2. Inicializacién directa: se asignan los valores al momento de declarar el arreglo.

int numeros[5] = {10, 20, 30, 40, 50};

Representacion gréfica del arreglo numeros en memoria por inicializacién directa.

3. Lectura mediante entrada de usuario: es una de las formas mas comunes para
llenar un arreglo con datos, solicitando al usuario del programa que introduzca
los valores desde el teclado usando un ciclo, el méas indicado para hacerlo es la
estructura for:

int calificaciones[5];

for (int 1 =0 ; 1 <5; i++) {

cout << “Ingrese la calificacién ” << i +1 << “: 7;
cin >> calificaciones[i];

}

4. Inicializacién implicita: en el lenguaje C++, también es posible que la declara-
cion de arreglos este acompafiada de una lista de valores escritos entre llaves, sin
indicar explicitamente el tamafio del arreglo. Esta forma de declaracién también es
correcta y se denomina inicializacién implicita.

int numeros[] = {5, 10, 15, 20, 25};

¢Sabias qué...? m

Acceso Directo.

La principal ventaja de un arreglo
unidimensional es su capacidad de
acceso directo (o aleatorio).

Esto significa que puedes acceder
a cualquier elemento de |a lista (por
ejemplo, al elemento en la posicion
50) en el mismo tiempo que tardarias
en acceder al primer elemento, sin
necesidad de recorrer los anteriores.

¢Sabias qué...? m

Si se intenta acceder a una posicién
que no existe en el arreglo (por ejem-
plo, arreglo[10] cuando solo hay 5
elementos), el programa puede com-
portarse de manera inesperada.

A este error se le llama desborda-
miento de indice (index out of range)
y es una de las causas mas comunes
de fallos en programas que usan
arreglos.

#include <bits/stdc++.h>
using namespace std;
int main() {

const int TAM = 5;

string autobuses[TAM];

// Captura de datos

Este método resulta Util cuando se conoce el conjunto exacto de valores que se
desea almacenar, ya que evita errores al calcular manualmente el tamario y mejora
la legibilidad del cédigo. Sin embargo, es importante recordar que todos los valores
deben coincidir con el tipo de dato declarado para el arreglo.

» Acceso

El acceso a los elementos de un arreglo unidimensional en C++ se realiza median-
te el uso de indices colocados entre corchetes ([]). Tal como se ha mencionado
anteriormente, los indices en C++ comienzan en 0, lo que significa que el primer
elemento del arreglo se encuentra en la posicién cero. Para obtener el valor de un
elemento especifico, basta con escribir el nombre del arreglo seguido del indice
correspondiente entre corchetes. Por ejemplo, si se tiene un arreglo de cinco ele-
mentos, el primer elemento se accede con el indice 0 y el dltimo con el indice 4,
ya que los indices vélidos van desde 0 hasta n-1, donde n es el tamafio del arreglo.

Ejemplo:

int numeros[5] = {10, 20, 30, 40, 50};
cout << numeros[@]; // Imprime 10 (primer elemento)
cout << numeros[4]; // Imprime 50 (ultimo elemento)

Es importante tomar en cuenta que intentar acceder a un indice fuera del rango
definido (por ejemplo, numeros[5]) provocara un error, ya que esa posicion no existe
en memoria. Este es uno de los errores méas comunes que se pueden cometer al
acceder a los datos de un arreglo.

En el siguiente ejemplo se muestra como un arreglo puede llenarse capturando sus
datos a través de entrada de usuario y como imprimir todo su contenido una vez que
fueron almacenado los datos en el.

// Tamano del arreglo
// Declaracion del arreglo

cout << “Ingrese los nombres de ” << TAM << “ autobuses:” << endl;
for (int i = @; 1 < TAM; i++) {

cout << “Autobus

cin >> autobuses[i];

3

<< 14+ 1< ‘7

// Mostrar los datos capturados
cout << “\nLista de autobuses ingresados:” << endl;
for (int 1 = @; i < TAM; i++) {
cout << “Posicion [7 << i << “] = 7 << autobuses[i] << endl;

3

return O;

)

Interpretacion:

1. Se define una constante llamada TAM con valor 5, que indica el tamafio del arre-
glo. El uso de una constante permite que el tamafio sea facil de modificar y evita
errores al cambiarlo en varias partes del codigo.

2. Se declara un arreglo llamado autobuses de tipo string, el cual podra almace-
nar 5 nombres. Cada posicién del arreglo corresponde a un indice que va desde
0 hasta 4

3. Se utiliza la estructura de control repetitiva. Ciclo for para recorrer las posiciones
del arreglo y solicitar al usuario que ingrese los nombres de los autobuses.

® Elcicloiniciaeni=0yterminaen i < TAM, asegurando que se capturen
exactamente 5 nombres.

® En cada iteracidn, se muestra un mensaje indicando el nimero del au-
tobus y se almacena el valor ingresado en la posicién correspondiente
del arreglo.

4. Una vez ingresados los nombres, se utiliza otro ciclo for para recorrer el arreglo
y mostrar cada elemento junto con su indice. Esto permite verificar que los datos
fueron almacenados correctamente.

5. Finaliza el programa. Se utiliza el return 0; para indicar que el programa terminé.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza lo siguiente:

1. Inicia un nuevo programa de C++ en Code Block que resuelva lo siguiente.
» Problema: Mi top de bandas legendarias del Rock

El rock nunca muere, solo se amplifica.

Imagina que eres parte de una comunidad estudiantil apasionada por el hard rock
y el heavy metal clasico, y que estan preparando un especial llamado “Las Leyen-
das del Rock”.

Tu tarea es desarrollar un programa que permita registrar los nombres de las ban-
das legendarias favoritas de los estudiantes y luego mostrar una lista personalizada
con un formato inspirado en un cartel de concierto.

Entrada
® |a primera linea contiene un nimero entero N, que representa la cantidad
de bandas que se van a registrar.

® Las siguientes N lineas contienen los nombres de las bandas (una cadena
por linea).

Salida
El programa debe mostrar un mensaje con el siguiente formato:

_\,./ Cartel Oficial: jLas Leyendas del Rock! _\,,/

Progresion 4

¢Sabias qué...?

El ciclo for es el mas utilizado para re-
correr arreglos porque permite con-
trolar con precisién cuéntas veces se
repite una instruccion.

Como el tamario del arreglo se cono-
ce desde el inicio, el for ejecuta las
acciones exactamente n veces, una
por cada elemento.

Por eso, es mas claro y menos pro-
penso a errores que otros ciclos
como while.

Relaciénalo con... @

En los programas que utilizan arre-
glos, las variables acumuladoras y
contadoras resultan esenciales para
procesar y analizar los datos almace-
nados.

El acumulador permite obtener re-
sultados como sumas o promedios,
mientras que el contador facilita sa-
ber cuéntos elementos se han recorri-
do o cumplen una condicién.

Sin ellas, seria mucho mas dificil ob-
tener informacion util del arreglo, ya
que no se tendria control sobre los
valores ni sobre la cantidad de datos
procesados.

a. [Nombre de la primera bandal]
b. [Nombre de la segunda banda]

N. [Nombre de la dltima bandal
iPrepérate para una noche de riffs y solos épicos!
Ejemplo:

_\,,/ Cartel Oficial: jLas Leyendas del Rock! _\,,/

6 1. AC/DC
AC/DC 2. Metalhcé

; 3. Iron Maiden
Metallica .
Iron Maiden 4. Led Zeppelin

: 5. Black Sabbath

Led Zeppelin 5 Black Sabbath
Black Sabbath -au u

Guns N’” Roses .) -~
iPrepérate para una noche de riffs y solos épicos!

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa en lenguaje C++ creado en Code Blocks colocando en el
nombre del archivo tus iniciales seguidas de _PC_P4_EO01.

4 Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimen-
tacion.

» Operaciones

En programacion, los arreglos unidimensionales permiten una vez creados, reali-
zar distintas operaciones para recorrer, operaciones aritméticas con los elemen-
tos, buscar elementos dentro de ellos y ordenar los elementos; estas acciones son
esenciales para resolver problemas de célculo, organizacién y anélisis de datos.

Recorrido (Traversal)

Recorrer un arreglo significa acceder a cada uno de sus elementos, normalmente
usando un ciclo for, esto permite leer, mostrar o modificar.

int arreglo[5] = {16,17,18,16,173};
for (int 1 = 0; i < n; i++) {
cout << arreglo[i] << endl;

3

El ciclo for utiliza la variable i como indice que va aumentando en cada repeticién,
lo que permite pasar o visitar todas las posiciones del arreglo una por una.

Operaciones aritméticas con los elementos de un arreglo

Una de las ventajas del uso de arreglos en programacién es que permiten realizar
operaciones aritméticas de manera ordenada y sistematica sobre un conjunto de
datos. Para poder realizar estas operaciones, es comun recorrer el arreglo con un
ciclo y aplicar la operacién deseada con cada elemento.

int suma = 0;
int calificaciones [5] = {8,9,7,8,9};
for (int 1 = 0; 1 < n; i+t+) {

suma += calificaciones[i];

3

cout << “La suma de las calificaciones es:

”

<< suma;

De forma similar, también pueden realizarse otras operaciones, como calcular pro-
medio, multiplicar los valores de una arreglo, entre otras.

Busqueda (Search)

La operacién de blsqueda de elementos en un arreglo es una de las operaciones
mas usuales en programas que los utilicen, ya que no solo basta con almacenar
datos, sino que también es necesario localizar un valor especifico dentro del arre-
glo; para esto se pueden utilizar diferentes métodos de busqueda, siendo el de
busqueda lineal el mas simple.

La blsqueda lineal consiste en recorrer el arreglo desde el primer hasta el dltimo
elemento, comparando cada valor con el dato que se desea encontrar; si el valor
coincide el programa muestra la posicion y detiene el recorrido si se llega al final
del arreglo sin encontrar coincidencias, significa que el valor no se encuentra en
el arreglo.

La busqueda lineal es muy Util en especial cuando los elementos del arreglo no
estan ordenados.

bool encontrado
int buscado = 5;
int numeros [6] {3,7,12,5,9,4};
for (int i = @; 1 < 6 && !encontrado ; i++) {
if (arreglo[i] == x) {
cout << “El numero ” << buscado <<
la posicion ” << i + 1 << endl;

false;

«

se encuentra en

encontrado = true;
b
b
if (l!encontrado) {
cout << “ELl numero no esta en el arreglo. ” << endl;

3

Progresion 4

Para saber mas...

Escanea el cédigo QR para consultar
infografia de la Jerarquia de opera-
dores

Para saber mas...

Escanea el codigo QR para observar
e interactuar con una infografia in-
teractiva sobre las operaciones con
arreglos.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza lo siguiente:
1. Inicia un nuevo programa de C++ en Code Blocks que resuelva lo siguiente.
» Problema: Buscando a tu personaje en el Torneo Multiverso Gamer

El Torneo Multiverso Gamer reline a los personajes mas iconicos de distintos vi-
deojuegos: desde héroes legendarios hasta villanos temidos.

Los organizadores del torneo te han pedido desarrollar un programa que permita
buscar si un personaje especifico fue seleccionado para competir este afo.

Tu tarea es:
® Registrar los nombres de los personajes participantes.
® Permitir que el usuario escriba el nombre de un personaje a buscar.

® Indicar si ese personaje estd inscrito o no fue seleccionado para el torneo.

Entrada
® Un numero entero N, que representa la cantidad de personajes inscritos.

® Lassiguientes N lineas contienen los nombres de los personajes (una cadena

por linea).

® Finalmente, una cadena con el nombre del personaje a buscar.

Salida
El programa debe mostrar un mensaje con el siguiente formato:

® Siel personaje si fue seleccionado:
® El personaje [nombre] esta listo para |a batalla en el Torneo Multiverso Gamer :)

® Si el personaje no fue seleccionado:
El personaje [nombre] no participa en el Torneo Multiverso Gamer este afio :(

¢ Cuantos personajes se inscribieron? 8

Personaje 1: Mario
Personaje 2: Link
Personaje 3: Pikachu
Personaje 4: Sonic
Personaje 5: Kratos
Personaje 6: Master Chief
Personaje 7: Lara Croft
Personaje 8: Scorpion

El personaje Kratos esté listo
para la batalla en el Torneo
Multiverso Gamer.

;Cual personaje quieres saber si participara
en el Torneo Multiverso Gamer? Kratos

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique. Guarda el
programa en lenguaje C++ creado en Code Blocks colocando en el nombre del
archivo tus iniciales seguidas de _PC_P4_E02.

3. Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimentacién.

Ademas de recorrer o buscar datos especificos, es comin que un programa que
usa arreglos se necesite identificar el valor mas grande o mas pequefio de todos
los elementos dentro del arreglo. Esto es (til para cuando se desea encontrar
por ejemplo la calificacion més alta o més baja en un conjunto de calificaciones
grupales.

Para lograr esto, se utiliza un proceso muy sencillo:

1. Se declara una variable auxiliar que almacene temporalmente el primer valor
del arreglo.

2. A medida que el ciclo recorre los elementos, se compara cada uno con el valor
almacenado.

3. Si se encuentra un valor mayor (o menor), este reemplaza al anterior.

Encontrar el valor minimo o maximo
Ejemplo de minimo:

int minimo = arreglo[0];
int numeros[5] = {10,25,8,32,173};
for (int 1 = 1; i < n; i++) {
if (arreglo[i] < minimo) {
minimo = arreglo[i];
3
3

cout << “El valor mas pequeno es: ” << menor << endl;

Ejemplo de méximo:

int maximo = arreglo[@];
int numeros[5] = {10,25,8,32,173};
for (int 1 = 1; i < n; i+t+) {
if (arreglo[i] > maximo) {
maximo = arreglo[i];

3

9

cout << “El valor mas grande es: << mayor << endl;

¢Sabias qué...? m

En C++, las variables de tipo string
son, en realidad, arreglos de carac-
teres.

Cada letra ocupa una posicién dentro
del arreglo, lo que permite acceder,
recorrer y modificar sus elementos
igual que en cualquier otro arreglo.

Por ejemplo, nombre[0] representa el
primer caracter de la cadena almace-
nada en la variable nombre.

Para saber mas...

Escanea el cédigo QR y observa e
interactla con la infografia interactiva
sobre el método burbuja.

Ordenamiento (Sorting)

Otra de las acciones que cominmente se realizan con los arreglos, es la de ordenar
los elementos, esto significa organizarlos siguiendo un criterio, ya sea de mane-
ra ascendente o descendente. Uno de los algoritmos mas sencillos para ordenar
los elementos de un arreglo es el método burbuja (Bubble sort), el cual basa su
funcionamiento en comparar pares de elementos adyacentes e intercambiar si no
estan en el orden correcto, este proceso se repite varias veces hasta que todos los
elementos quedan ordenados.

Algoritmo de ordenamiento (método de la burbuja):

for (int 1 = 0; 1 < n-1; i++) {
for (int j = 0; j < n-i-1; j++) {
if (arreglo[j] > arreglo[j+1]) {
int temp = arreglo[j];
arreglo[j] = arreglo[j+1];
arreglo[j+1] = temp;

Estas operaciones son esenciales para el manejo de datos en programas més com-
plejos. A continuacién, se describen algunas de ellas con ejemplos practicos en C++.

El lenguaje C++ cuenta con la funcién sort() que ordena el arreglo de menor a
mayor utilizando algoritmos avanzados optimizados internamente.

int N = 5;

int numeros[N];

for (int 1 =0 ; 1 < N ; i++){
cin >> numeros [i];

3

sort (numeros, numeros + N);

Otra de las funciones que el lenguaje C++ tiene para trabajar de manera eficiente
estructuras de datos es la funcién reverse() esta permite invertir el orden de los
elementos de un arreglo, logrando que al combinar la funcién sort() con la rever-
se() se obtenga el arreglo ordenado de manera descendente o viceversa segin se
necesite.

reverse (numeros, numeros + N);

Progresion 4

Estas dos funciones, sort() y reverse() proporcionan herramientas eficientes para
trabajar de una forma rapida y con las estructuras de datos, optimizando el rendi-
miento y reduciendo la complejidad del cédigo.

En el siguiente ejemplo se muestra como un arreglo puede llenarse capturando
sus datos a través de entrada de usuario y como imprimir todo su contenido una
vez que fueron almacenado los datos en el. Ademas de hacer un ordenamiento
Ascendente y Descendente.

#include <bits/stdc++.h>
using namespace std;

int main() {
const int TAM = 5; // Tamano del arreglo
string autobuses[TAM]; // Declaracion del arreglo

// Captura de datos
cout << “Ingrese los nombres de ” << TAM << “ autobuses:” << endl;
for (int 1 = @; i < TAM; i++) {
cout << “Autobus ” << i + 1 << “: 7;
cin >> autobuses[i];

3

// Mostrar los datos capturados
cout << “\nLista de autobuses ingresados:” << endl;
for (int 1 = @; i < TAM; i++) {
cout << “Posicion [” << 1 << “] = 7 << autobuses[i] << endl;

}

// Ordenar en orden ascendente
sort(autobuses, autobuses + TAM);
cout << “\nLista ordenada en orden ASCENDENTE:” << endl;
for (int 1 = 0; i < TAM; i++) {
cout << autobuses[i] << “ 7;

3

cout << endl;

// Ordenar en orden descendente usando reverse()
reverse(autobuses, autobuses + TAM);
cout << “\nLista ordenada en orden DESCENDENTE:” << endl;
for (int 1 = 0; i < TAM; i++) {

cout << autobuses[i] << “ 7;

3

cout << endl;

return 0;

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza lo siguiente:
1. Inicia un nuevo programa de C++ en CodeBlocks que resuelva lo siguiente.
» Problema: Ordenando los Likes del dia

Un grupo de estudiantes de bachillerato estd participando en un reto escolar en
redes sociales donde cada uno publica un video corto.

Tu tarea es desarrollar un programa que registre el nimero de “likes” que obtuvo
cada video durante el dia y luego muestre esos valores ordenados de menor a

mayor para conocer quién tuvo mas interaccion.

Entrada
Un nimero entero N, que representa la cantidad de videos publicados.

Una linea con N nimeros enteros separados por espacio, donde cada nimero
indica la cantidad de “likes” obtenidos por cada video.

Salida
El programa debe mostrar un mensaje con el siguiente formato:

Likes ordenados del reto escolar
[Like1] [Like2] [Like3]...[LikeN]

iAsi quedd el ranking del dial

Ejemplo:

¢ Cuantos videos se publicaron el dia de hoy? 6 | Likes ordenados del reto

escolar
Likes: 320
Likes: 150 150 290 320 410 475 510
Likes: 475
Likes: 290
Likes: 510 iAsi quedd el ranking del dial!
Likes: 410

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa en lenguaje C++ creado en Code Blocks colocando en el
nombre del archivo tus iniciales seguidas de _PC_P4_E03.

4. Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimen-
tacion.

Concretando mis conocimientos

Es tiempo de demostrar tu aprendizaje de los temas de Estructuras de datos, red-
nete con tu equipo de trabajo y de manera colaborativa realicen lo siguiente:

1. Inicia un programa de C++ en Code Blocks que resuelva el siguiente problema:
Raking Gamer - Busca tu posicién en la tabla!.

Durante el evento “GameZone Challenge”, cientos de jugadores compiten en
linea por alcanzar la mayor puntuacién posible.

Ta eres el encargado de desarrollar un programa que ayude a organizar el ranking
de jugadores y buscar si un jugador especifico logré entrar en el Top del Dia.

Tu programa debe:

® Leer puntuaciones obtenidas por los jugadores.

® Ordenarlas de mayor a menor (para formar el ranking).

® Permitir buscar una puntuacién especifica y decir si aparece en el ranking o no.
Ademas de la posicién en la que esta.

Entrada

® Un nimero N, que indica cuantos jugadores participaron.

® Una linea con N niimeros enteros, separados por espacio, que representan las
puntuaciones obtenidas.

® Una linea adicional con una puntuacién X que se desea buscar.

Salida

El programa debe mostrar los siguientes mensajes:

® La lista ordenada de puntuaciones (de mayor a menor).

® Un mensaje indicando si la puntuacién buscada se encuentra en el ranking y en
que posicién se encuentra.

Mensaje de salida en caso de encontrar la puntuacién:
La puntuacién X esta en la posicién N del ranking. jBuen trabajo gamerl!.

Mensaje de salida en caso de no encontrar la puntuacién:
La puntuacién X no aparece en el ranking. jSigue practicando!.

Progresion 4

¢ Cuantos jugadores participaron? 8 Ranking del GameZone Challenge

o 1: 900
Puntaje jugador 1: 540

S 2:830
Puntaje jugador 2: 720

S 3:720
Puntaje jugador 3: 610

Ll 4:700
Puntaje jugador 4: 450

e 5: 660
Puntaje jugador 5: 900)

e 6: 610
Puntaje jugador 6: 660)
Puntaje jugador 7: 830 73540

8: 450

Puntaje jugador 8: 700

;Cual puntaje deseas buscar? 720 La puntuacion 720 esta en la posicion

3 del ranking. jBuen trabajo gamer!

;Cuantos jugadores participaron? 5 Ranking del GameZone Challenge
Puntaje jugador 1: 300 1: 500

Puntaje jugador 2: 250 2: 400

Puntaje jugador 3: 400 3:380

Puntaje jugador 4: 380 4: 300

Puntaje jugador 5: 500 5:250

¢ Cudl puntaje deseas buscar? 600 La puntuacién 600 no aparece en el

ranking. jSigue practicando!

2. Una vez terminado el algoritmo ejecuta y comprueba su correcto funcionamien-
to con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa de C++ creado en Code Blocks colocando en el nombre
del archivo tus iniciales seguidas de PC_P4_CMC.

4. Comparte con tu profesor por el medio que indique tu algoritmo probado y listo
para recibir evaluacion.

Instrumento de evaluacion
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
ﬁ profesor evaluaré tu programa en Code Blocks.

Indicador Si No Puntos
Demostrando mi aprendizaje

El algoritmo solicita correctamente los datos
Para demostrar tu aprendizaje con- de entrada: nimero de jugadores, puntuacio- 1
ceptual referente a los temas abor- nes y puntuacion a buscar.
dados en esta progresion, realiza la
actividad interactiva, ingresa a ella
escaneando el cédigo QR.

Se muestra un mensaje inicial indicando el
propdsito del programa (organizar ranking y 1
buscar puntuacién).

Se ordenan correctamente las puntuaciones

3
de mayor a menor.
Se busca correctamente la puntuaciéon desea- 5
day se determina si esté en el ranking.
Se muestra la posicion de la puntuacion bus- 5
cada con un mensaje claro y motivador.
Se muestra un mensaje adecuado si la 1

puntuacién no se encuentra en el ranking.

Valorando mi aprendizaje

La evaluacion es un proceso continuo de formacion, Util para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentacién y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guian en
la valoracion de los aprendizajes que adquiriste progresivamente en las secuencias
didacticas anteriores. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendi

Contesta las siguientes preguntas y reflexiona sobre tu desempefio en estas dos
progresiones.

® ;Qué fue lo mas importante que aprendiste sobre las estructuras de control en
C++y como consideras que este conocimiento te ayuda a pensar de manera més
|6gica en otras materias?

® Reflexiona sobre la importancia de las estructuras de control en la creacién de
programas funcionales. ;Qué relacién encuentras entre organizar instrucciones en
C++ y organizar tareas o actividades en tu vida diaria?

® Piensa en un programa que hayas codificado utilizando arreglos en C++. ;Qué
fue lo mas dificil y qué aprendiste del proceso de prueba y error?

® Después de todo lo aprendido, jqué consideras que necesitas practicar mas en
programacion estructurada en C++ y por qué crees que eso sera importante para
tu avance académico?

Actividad alternativa

Resuelve para reforzar tu aprendizaje e incrementar tu evaluacion.

1. Crea un video donde se observe y expliques:
a. El disefio de un programa en lenguaje C++ para calcular el promedio
de calificaciones.
b. El resultado debe mostrar el promedio de un alumno y los mensaje de
nivel segun el resultado:
® "Excelente” para calificacion 9-10
e "Suficiente” para calificacién 7-8
® "Necesitas apoyo para calificacion 5-6".
c. Emplea el tipo de estructura que optimice la operacion.

2. Envia el video a tu profesor para que evalte tu desempefio.

Progresion 4

Progresion 4

Avutoevaluacion

La autoevaluacién es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una v la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Distingue la sintaxis basica de C++
y la utilidad de las estructuras de
control para organizar la ejecucion
de instrucciones.

Representa soluciones a problemas
cotidianos y académicos mediante
algoritmos que incorporan estruc-
turas de control secuenciales y
repetitivas.

Codifica, compila y ejecuta progra-
mas en C++ validando su funciona-
miento y corrigiendo errores en el
uso de estructuras de control.

Identifica la utilidad de los arreglos
unidimensionales en la resolucién
de problemas que requieren mane-
jar multiples valores del mismo tipo
de datos.

Representa soluciones a problemas
cotidianos y académicos mediante
el disefio de algoritmos que em-
plean arreglos unidimensionales.

Codifica y ejecuta programas en
C++ que utilizan arreglos unidimen-
sionales para almacenar, recorrer y
procesar datos (suma, promedio,
maximo, minimo, busqueda lineal y
ordenamiento).

Lo mejor que aprendi fue:

Lo que necesito reforzar es:

Calificacién que doy a mi
desempeiio:

Nivel de dominio

Criterios En

Auln no

proceso | lo logro

|dentifico la sintaxis basica de C++ (declaracion de variables,
operadores, entradas y salidas).

Reconozco la utilidad de las estructuras de control selectivo y
repetitivo.

Selecciono la estructura de control adecuada segun el problema
planteado.

Explico en qué casos conviene utilizar cada tipo de estructura de
control.

Traduzco un algoritmo a cédigo C++ utilizando correctamente
las estructuras de control.

Compilo y ejecuto programas verificando que funcionen segin
lo esperado.

Reconozco problemas que requieren almacenar muchos valores
del mismo tipo.

Identifico cudndo es mas eficiente usar un arreglo en lugar de
variables aisladas.

Disefio algoritmos que incluyen la declaracion, lectura y uso de
arreglos unidimensionales.

Estructuro los pasos para recorrer un arreglo (bisqueda, conteo,
acumulacion, etc.).

Declaro y utilizo correctamente arreglos unidimensionales en
C++.

Implemento operaciones de procesamiento: suma, promedio,
maximo, minimo.

Realizo blsqueda lineal en un arreglo.

Evalta el desempefio general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluacion y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos falté (2) Debemos mejorar (1) m

Se organizé el trabajo, pero no se esti-
pularon tareas, prioridades o el plazo de
entrega final.

Coevaluacion

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

No hubo organizacién para realizar
nuestros trabajos.

Casi todos los miembros del equipo cum-
Cumplimos cada uno con las tareas plimos con las tareas asignadas y el plazo Un solo miembro del equipo realizd
asignadas en el plazo estipulado. estipulado; teniendo que resolver lo que a todos los productos.

otros les fue encomendado.

- . Casi todos los miembros del equipo parti- | No hubo participacién de los miem-
Todos participamos activamente en ;) - . -

- cipamos activamente en la elaboraciéon de | bros del equipo en la elaboracion
la elaboracion de los productos.

los productos. de los productos.
La calidad de los productos que La calidad de los productos que elabora- No se cumplié con la calidad
elaboramos fue la adecuada para su | mos fue en su mayoria la adecuada para adecuada de los productos para su
entrega. su entrega. entrega.
Total _ de 12

PENSAMIENTO COMPUTACIONAL o n

. s

Roboética
Educativa

£
o
v
o
1 S
o
)
T
[

Simula sistemas robéticos mediante aplicaciones graficas y la programacién en Arduino, implementando estructuras
basicas de codigo (setup y loop), funciones elementales (pinMode, digitalWrite, delay), control de salidas
multiples mediante ciclos y retardos, asi como el uso de sensores y actuadores para resolver problemas simples de
automatizacion.

Tiempo estimado: 12 horas

Tus metas seran:

® |dentificar la importancia de la robética educativa como herramienta para comprender la interaccién entre
hardware y software.

® Configurar sistemas basicos de automatizacién en un entorno grafico controlando las salidas.

e Codificar programas con estructuras de control, funciones basicas, bucles, sensores y actuadores en simuladores.

Recuperando lo que sabemos

Este cuestionario es de recuperacién de conocimientos previos, es Util para identificar tus saberes y habilidades y cémo
los relacionas con la realidad, ademas te ayudard a comprender mejor los temas de esta progresién. No es necesario que
conozcas los términos técnicos; lo importante es expresar cémo entiendes o aplicarias cada situacion, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. Cuando escuchas las palabras “Robdtica Educativa”, ;qué es lo primero que te viene a la mente? ; Qué esperas aprender
o ser capaz de construir utilizando robots en un entorno de aprendizaje?

2. Si tuvieras que explicarle a un amigo qué es un robot, ;qué dirias que son sus tres partes esenciales para que pueda
realizar una tarea? (Pista: Piensa en cémo interactia con el mundo, cémo “piensa” y cémo se mueve).

3. ;De qué manera crees que el conocimiento de la programacién y la robdtica podria ser relevante o dtil para tu futuro,
incluso si no planeas ser ingeniero o programador?

m a

Progresion 5

Reactivando mis conocimientos

Cada vez que disefias un robot, decides qué sensores usar o programas sus movimientos, estas aplicando légica, secuencia
y analisis de problemas, los mismos principios que se utilizan al crear un algoritmo.

Imagina este escenario:
En tu clase de robdtica, tu equipo debe programar un robot para que recoja objetos de diferentes colores y los coloque en
cajas segun su categoria. Tu objetivo es disefiar un procedimiento paso a paso que permita al robot identificar el color del
objeto, decidir a qué caja llevarlo y completar la tarea de manera eficiente.
1. En tu cuaderno o documento digital, escribe los pasos que seguirias para que un robot detecte un objeto mas cercano,
leer el color del objeto, decidir la caja correspondiente al color, mover el robot hacia la caja correcta, colocar el objeto en la
caja y repetir el proceso hasta que no queden objetos.
2. |dentifica los elementos del problema:

® Datos de entrada: ; Qué informacién recibes?

® Proceso: ;Qué acciones o reglas aplicas para clasificar colores?
e Salida: ;Cudl es el resultado final o estado ideal de tu pantalla?

3. Reflexiona y responde en tus notas:

¢Qué parte de tu procedimiento crees que un programa podria automatizar?
e ;Coémo te ayudaria usar un entorno de desarrollo para simular tu algoritmo antes de programarlo?
¢Qué ventajas tendria poder observar cémo se ejecutan tus pasos uno por uno en una simulacién?

Comparte en clase tus pasos y reflexiones con tus compafieros y el profesor. Analicen juntos cuél de los procedimientos fue
mas claro, ordenado y eficiente, y comenten cémo ese mismo proceso podria transformarse en un algoritmo computacional
para el robot.

c m

Progresion 5

5.1 Introduccion a la robética

Conceptos clave

Robot. Fue inventada por el escri-
tor checo Karel Capek para desig-
nar a los autématas de su obra tea-
tral de ciencia ficcion R.U.R (Robots
Universales Rossum), estrenada en
Praga en 1921. Una palabra acufia-
da por Capek a partir del término
checo robota, que hace referencia
al trabajo duro.

¢Sabias qué...?

La robética no solo consiste en cons-
truir maquinas con forma humana.
En realidad, es la combinacion de
mecanica, electrénica y programa-
cion para crear sistemas capaces de
realizar tareas autébnomas.

iMucho mas que robots humanoi-
des de pelicula!

Historia

En la actualidad, la tecnologia forma parte esencial de la vida diaria desde los
teléfonos inteligentes hasta los sistemas automatizados en fabricas, la innovacién
tecnoldgica estd presente en casi todo lo que nos rodea.

Dentro de este contexto surge la robdtica, una disciplina que despierta gran in-
terés y curiosidad. Sin embargo, cuando se pregunta qué es la robética, lo mas
comun es relacionarla Unicamente con robots humanoides o con escenas de peli-
culas de ciencia ficcién; esta idea, aunque popular, no refleja la verdadera esencia
de la robdtica.

Las maquinas a las que cominmente se les llaman robots, son disefiadas para
actividades muy diversas: desde ensamblar piezas en una fabrica hasta explorar
otros planetas. Mas alld de la imagen futurista que se suele tener, la robdtica es
una herramienta practica que busca facilitar procesos, mejorar la calidad de vida 'y
ampliar las posibilidades de la ciencia y la tecnologia.

¢ Qué es la Robética y Qué es un Robot?

La robdtica es una rama interdisciplinaria que combina conocimientos de ingenie-
ria mecanica, electrénica, eléctrica, control y ciencias de la computacion.

Ramas de la ciencia que integran la robdtica.

Su objetivo es disefiar, fabricar y programar maquinas automaticas con cierto gra-
do de inteligencia, capaces de ejecutar tareas especificas. Por su parte, un robot
es una maquina programable que puede tomar decisiones basadas en la estructura
de su programa y realizar acciones de manera automatica.

En términos sencillos, la robética se dedica al disefio y desarrollo de robots capa-
ces de sustituir o complementar actividades humanas en distintos ambitos, como

la industria, el hogar o los entornos cientificos; esta disciplina no se limita unica-
mente a especialistas, sino que también resulta accesible para estudiantes y entu-
siastas interesados en aprender y experimentar.

» Clasificacion de la Robética
La robdtica se aplica en diversos campos, entre los que destacan:

® Robética industrial: disefia robots para procesos de manufactura y ensamble,
como la produccién automotriz, la clasificacion de piezas y el empaquetado de
alimentos. Su objetivo es reducir costos, optimizar tiempos y minimizar errores
humanos.

® Robética de servicio: incluye robots que brindan asistencia a las personas,
como sistemas quirdrgicos, robots de limpieza, dispositivos para entretenimiento,
exploracioén y rescate.

® Robética espacial: se enfoca en la creacion de robots para la exploracién del
espacio. Ejemplos son los robots Spirity Opportunity, enviados a Marte para inves-
tigar la posible existencia de agua.

Robot Spirit que forma parte del Programa de Exploracion de
Marte de la NASA. Enviada en enero de 2004.

» Robética Educativa y STEM

Ademas de sus aplicaciones industriales y cientificas, la robdtica tiene un papel
fundamental en la educacién. La robética educativa, también llamada robdtica
pedagdgica, busca que los estudiantes se familiaricen con la programacién y el
disefio de robots desde edades tempranas.

Esta disciplina se adapta al nivel académico del alumno, ofreciendo herramientas
sencillas para la educacion basica y sistemas mas complejos para niveles superio-
res.

La robética educativa forma parte del modelo STEM (Science, Technology, Engi-
neering and Mathematics), que promueve el aprendizaje practico de la ciencia, la
tecnologia y las matematicas.

Este enfoque permite desarrollar habilidades cognitivas, pensamiento légico y crea-
tividad, mientras se aprende a resolver problemas mediante la experimentacion.

Conceptos clave @

STEM. El modelo educativo ha
evolucionado hacia STEAM, incor-
porando el arte como un elemento
fundamental para fomentar la
creatividad y la innovacién en los
procesos de aprendizaje.

¢Sabias qué...? m

STEAM en educacién no tiene nada
que ver con videojuegos. Es un en-
foque que une ciencia, tecnologia,
ingenieria, arte y matematicas para
desarrollar habilidades del siglo XXI.

iMuy distinto a Steam, la tienda digi-
tal de juegos!

Tipo de educacién con origenes
en la década de los 90.

Progresion 5

¢Sabias qué...? m

La electricidad es simplemente el
movimiento de cargas eléctricas,
pero es la base de casi todo lo que
usamos a diario: desde tu celular
hasta el refrigerador.

jUn fenémeno invisible... pero impres-
cindible!

Conceptos clave

Oscilante. Describe algo que oscila,
es decir, que se mueve o varia de for-
ma repetitiva y recurrente alrededor
de una posicion de equilibrio

Relaciénalo con... {§}

La Corriente Directa (CD) es la que
entregan las pilas, baterias y paneles
solares. Fluye en un solo sentido, lo
que la hace ideal para electrénica y
dispositivos portatiles.

jLa energia perfecta para lo que se
lleva en el bolsillo!

Conceptos basicos de electricidad y electrénica

La electricidad y la electrénica forman los cimientos de casi toda la tecnologia
moderna, y comprenderlas es indispensable para adentrarse en el mundo de la ro-
bética. La electricidad se define como el movimiento de cargas eléctricas a través
de un material conductor, lo que permite transportar energia y activar dispositivos
como motores, luces o sensores; por otro lado la electrénica, es la rama de la
tecnologia que estudia, controla y aprovecha ese flujo de electricidad mediante
componentes especfﬁcos como resistencias, diodos, transistores, microcontrola-
dores y circuitos integrados.

La electricidad entonces se origina por el movimiento de particulas cargadas lla-
madas electrones, que poseen carga negativa. Cuando estos electrones se des-
plazan por un conductor metélico, generan lo que se conocer como corriente
eléctrica.

Un ejemplo cotidiano es el cargador de un teléfono celular, al conectarlo a la co-
rriente, la electricidad fluye por el cable para alimentar el dispositivo y permitir que
la bateria se recargue.

Para describir y medir la electricidad se emplean unidades especificas:

® Voltio (V): representa la fuerza que impulsa a los electrones a moverse por un
circuito.

® Amperio (A): indica la cantidad de corriente eléctrica que esta circulando en
un conductor.

Existen dos formas principales de corriente eléctrica:

e Corriente alterna (CA) o AC (en inglés): es el tipo de corriente eléctrica en la
que el sentido del flujo de los electrones (la polaridad) cambia periédicamente, a
intervalos regulares, con un patrén oscilante que se representa como una onda si-
nusoidal. Debido a esta variacién de polaridad, la corriente alterna fluye en ambos
sentidos dentro del circuito.

La velocidad a la que ocurre esta oscilacion se mide en hertzios (Hz), que indican
cuantos ciclos se producen por segundo. En muchos paises europeos y de otras
regiones, la frecuencia es de 50 Hz, mientras que en paises como México y Estados
Unidos es de 60 Hz.

La corriente alterna es ideal para transportar energia a grandes distancias, ya que
puede transformarse facilmente a diferentes voltajes mediante transformadores.
Por este motivo, es el tipo de corriente que se emplea en la distribucién eléctrica
desde las centrales generadoras hasta zonas urbanas y residenciales, es decir, es la
que llega a los hogares y alimenta la mayoria de los electrodomésticos.

e Corriente continua (CC) o DC (en inglés): en la corriente continua, los elec-
trones se desplazan de manera constante en una sola direccién, sin cambios de
polaridad. Este flujo estable resulta especialmente adecuado para dispositivos
electrénicos que requieren un suministro preciso y uniforme.

Progresion 5

La corriente continua proviene de fuentes como pilas, baterfas, paneles solares y
otros generadores. Es la energia que almacenan las baterias de los teléfonos moé-
viles, computadoras portatiles, controles remotos y muchos dispositivos portatiles.
Incluso los aparatos que funcionan conectados a la corriente alterna suelen conver-
tirla internamente en corriente continua para su funcionamiento interno.

Representacion de las corrientes CC y AC.

Resistencia: La resistencia es la oposicion que presenta un material al paso de la
corriente eléctrica. Se mide en ohmios (Q).

En las resistencias hay cédigos de colores. Estos coédigos se utilizan para medir la “re-
sistencia de las resistencias”, por lo cual es fundamental conocer esta codificacién.

El coédigo de resistencia estd compuesto por un nimero de bandas que oscilan
entre 3 a 6. Siendo la mas comun la de 4 bandas.

¢Sabias qué...?

Las resistencias no solo controlan la
Representacion gréfica de la resistencia y su cédigo de colores. . Lo g .
corriente eléctrica: también vienen
en distintos tamafos y potencias
segln lo que pueden soportar. Las

mas comunes son las pequefias de

En la resistencia de la imagen podemos observar que:
® Banda 1 es de color azul por lo tanto corresponde a un 6.

® Banda 2 es de color rojo por lo tanto corresponde a un 2. % de watt, ideales para proyectos
® Banda 3 es de color verde por lo tanto corresponde a multiplicarlo por 100,000 Q. con Arduino, pero también existen
® Banda 4 es de color dorado por lo tanto corresponde a una tolerancia del 5% resistencias mas grandes que disipan

mayor calor.

Entonces para calcular el valor de la resistencia seria:

62 x 100,000Q = 6,200,000 iSu tamafio no es al azar, sino una
pista de cuanta energia pueden ma-

) L) ol
Por lo tanto, la resistencia tiene un valor de 6.2 megaohmios (MQ) con una tole- nejar

rancia de = 5%.

c m

Representacion grafica de la
polaridad de un LED.

Representacion grafica de la
polaridad de un LED.

Por ejemplo, si se conecta directamente un LED a una pila de 9 voltios sin utilizar
resistencia, la corriente que circula serd demasiado alta y el LED se quemara casi
de inmediato. Esto ocurre porque el componente no esta disefiado para soportar
ese nivel de corriente. En cambio, al colocar una resistencia de 330 Q en serie con
el LED, la corriente se reduce a un nivel seguro, evitando que el LED sufra dafios,
ya que la resistencia actia como un limitador que controla cuanta corriente pasa
por el circuito.

La Ley de Ohm establece la relacion entre el voltaje (V), la corriente eléctrica (I) y
la resistencia (R). Esta ley indica que, si se conocen dos de estos valores, es posible
calcular el tercero mediante la férmula: V=/7x R

Suponiendo que se cuenta con una pila de 9 voltios y una resistencia de 330 Q
conectada en un circuito sencillo, para calcular la corriente usando la ley de Ohm'y
sustituyendo los valores se obtiene:

\4 9V

= = = Sa0m =~ (027 A 27 mA) VIR

Este célculo permite determinar la cantidad de corriente que pasara por el circuito
y verificar si es segura para componentes sensibles, como un LED. De esta manera,
la Ley de Ohm se convierte en una herramienta fundamental para disefiar y evaluar
circuitos eléctricos basicos.

La potencia eléctrica indica la cantidad de energia que un dispositivo consume en
un tiempo determinado. Se mide en vatios (W) y se calcula mediante la férmula:

P=VxI

Por ejemplo, si una ldmpara estd conectada a una fuente de 120 V y consume
0.5 A de corriente, su potencia puede calcularse sustituyendo estos valores en la
férmula:
P=VxI
P=120V x0.5 A
P=60W

Esto significa que la ldampara consume 60 vatios de potencia, dato que permite
estimar su gasto energético y comparar la eficiencia entre distintos dispositivos.

La polaridad se refiere a la identificacion del polo positivo (+) y negativo (=) en
componentes eléctricos y electrénicos. Muchos dispositivos funcionan de manera
correcta Unicamente si estan conectados con la polaridad adecuada.

Al conectar un LED por ejemplo, es necesario unir el dnodo (+) al lado positivo
de la pila y el catodo () al lado negativo. Si la polaridad se invierte, el LED no
encenderd, ya que los diodos permiten el paso de la corriente Ginicamente en una
direccién.

Respetar la polaridad es fundamental para asegurar el funcionamiento adecuado
de los componentes electrénicos y evitar fallas en el circuito.

Aplicaciones

La robética educativa se ha convertido en una herramienta clave para desarrollar
habilidades tecnolégicas en estudiantes, fomentando el aprendizaje practico y la
creatividad. Dentro de este contexto, Arduino destaca como una de las platafor-
mas mas accesibles y versétiles para introducir a los alumnos en el mundo de la
programacion y la electrénica aplicada.

Arduino es una placa de desarrollo basada en un microcontrolador que permite
controlar dispositivos electrénicos mediante instrucciones programadas. Su disefio
abierto y su facilidad de uso la convierten en el punto de partida ideal para proyec-
tos de robdtica, automatizacién y sistemas interactivos.

En la placa de Arduino, se pueden aplicar conceptos basicos de electricidad y
electrénica, como voltaje, corriente, resistencia y polaridad en proyectos reales,
reforzando la comprensién tedrica con experiencias practicas.

Dentro del proyecto Arduino existe una amplia variedad de placas de desarrollo
disefiadas para diferentes tipos de proyectos. Algunas son modelos bésicos, idea-
les para tareas sencillas con pocas entradas y salidas; otras son mas avanzadas,
ofreciendo mayor cantidad de pines y capacidades adicionales. También se en-
cuentran placas con conexién a redes cableadas o inalambricas, versiones compac-
tas para proyectos donde el espacio es limitado e incluso placas flexibles pensadas
para integrarse en prendas de vestir.

El modelo Arduino UNO R3 ha sido seleccionado por su facilidad de uso, versati-
lidad y amplia compatibilidad con componentes y simuladores, lo que lo convierte
en la opcioén ideal para introducir conceptos de electrénica, programacion y robé-
tica educativa.

Partes de la placa Arduino UNO R3.

Progresion 5

¢Sabias qué...?

Arduino nacié en 2005 en lvrea, Ita-
lia, como un proyecto para facilitar
la ensefanza de la electrénica y la
programacion. Fue creado por un
equipo encabezado por Massimo
Banzi, junto con David Cuartielles,
Tom Igoe, Gianluca Martino y David
Mellis.

iComenzé como una herramienta
para estudiantes... y termind revo-
lucionando el mundo del hardware
abierto!

Placa Arduino UNO R3

Relaciénalo con... @

Existen diferentes placas Arduino,
cada una disefiada para un tipo de
proyecto. La Arduino Uno es la mas
famosa y perfecta para empezar; la
Mega ofrece mas pines para proyec-
tos grandes; la Nano es ideal para es-
pacios pequenios; y la Leonardo pue-
de funcionar como teclado o ratén.

iCada placa tiene su propia persona-
lidad y propésito en el mundo!

¢Sabias qué...? m
Algunos pines digitales del Arduino
Uno tienen la funcién especial PWM,

u_n

marcada con el simbolo .

Esto permite crear sefiales que pa-
recen analdgicas, como variar el bri-
llo de un LED o la velocidad de un
motor.

iNo son analégicos reales, pero en-
ganan muy bien!

Relaciénalo con... @

Wokwi es un simulador de Ardui-
no que funciona 100% online y sin
limites: puedes usar ESP32, Arduino
Mega, sensores avanzados y hasta
pantallas OLED.

jldeal para probar proyectos com-
plejos sin hardware real!

» Partes de la placa Arduino UNO R3

® Puerto de alimentacién externa: permite suministrar energia a la placa cuan-
do no estd conectada mediante el cable USB tipo B. Este puerto se utiliza en
proyectos donde el Arduino debe funcionar de forma auténoma, sin depender de
una computadora. Generalmente se conectan fuentes de voltaje externas, siempre
dentro del rango permitido por la placa, que va de 7 V a 12 V. Superar este limite
puede ocasionar dafos irreversibles en el dispositivo.
® Pines de alimentacion:
® Vin: voltaje de entrada si se emplea una fuente externa dentro del
® rangode 7-12V.
® 5V: suministra un voltaje regulado de 5 voltios, ideal para médulos y
sensores compatibles con esta tension.
® 3.3v: ofrece una salida 3.3 voltios para componentes de baja tension.
® GND: representa la tierra del circuito, es fundamental para completar
cualquier conexién eléctrica.
® Pines analégicos (A0 a A5): permiten leer sefiales analdgicas provenientes de
sensores como potenciémetros, sensores de temperatura o humedad; convierten
la sefial analdgica en un valor digital que va de 0 a 1023, debido a una resolucién
interna de 10 bits.
® Pines digitales (DO a D13): pueden configurarse tanto como entradas (INPUT)
como salidas (OUTPUT). Algunos de estos tienen funciones especiales:
e DOy D1: se utilizan para comunicacion serial (RT y TX).
e D3, D5, D6, D9, D10y D11: generan sefiales PWM (modulacién por
ancho de pulso) se activan con (analogWrite).
® Botdn de reset: reinicia el programa cargado sin necesidad de desconectar el
Arduino. Es util para volver a ejecutar el cédigo desde el principio.

» Simuladores

Los simuladores son herramientas fundamentales para el aprendizaje practico, ya
que permiten experimentar y desarrollar habilidades sin necesidad de utilizar equi-
pos fisicos costosos o complejos. En el dmbito educativo, ayudan a comprender
conceptos abstractos y favorecen la creatividad mediante una practica segura y ac-
cesible. Antes de adquirir una placa Arduino y dedicar tiempo al montaje real, es
recomendable validar el disefio del circuito de manera virtual. Los simuladores de
Arduino permiten recrear la placa y sus componentes, probar el funcionamiento
del circuito y verificar el codigo, asegurando que todo opere correctamente antes
de llevarlo a la practica fisica. Algunos de los simuladores mas comunes son:

e Tinkercad: Plataforma intuitiva para disefio 3D y simulacién de circuitos elec-
trénicos. Ideal para principiantes y proyectos educativos.

® Wokwi: Simulador avanzado para microcontroladores como Arduino, ESP32 y
Raspberry Pi. Perfecto para desarrolladores que buscan probar cédigo y hardware
virtualmente.

® Proteus: Software profesional para simulacién de circuitos y sistemas embebi-
dos. Muy usado en entornos académicos y de ingenierfa.

® Xevro: Ofrece simuladores y herramientas para proyectos electrénicos y auto-
matizacién, con enfoque en hardware real y entornos industriales.

® IDE de Arduino: Aunque es principalmente un entorno de desarrollo, incluye
funciones de simulacién y pruebas basicas para cédigo antes de cargarlo en hard-
ware real.

Progresion 5

5.2 Aplicacion TinkerCAD

Tinkercad es una plataforma en linea gratuita, desarrollada por Autodesk, que
permite crear modelos 3D, simular circuitos electrénicos y programar microcontro- B
ladores mediante una interfaz intuitiva y accesible para usuarios de cualquier nivel. Para saber mas...
Por su disefio sencillo y visual, se ha convertido en una herramienta fundamental
dentro de la educacion tecnolégica, ya que facilita el aprendizaje practico sin ne-
cesidad de contar con equipos fisicos costosos o complejos.

Escanea el codigo QR y observa el
video Tinkercad.

En el dmbito de la robdtica educativa, Tinkercad aporta un espacio seguro y dindmi-
co para experimentar con componentes electrénicos, comprender el funcionamien-
to de sensores y actuadores, y validar el comportamiento de un circuito antes de
construirlo en la realidad. Su simulador de circuitos permite observar en tiempo real
cdmo interactlian las conexiones, el voltaje, la corriente y las instrucciones de pro-
gramacion, lo que ayuda a relacionar conceptos tedricos con resultados concretos.

Para comenzar a usar la plataforma es necesario crear una cuenta:
1. Accede al sitio web oficial.
1.1 En cualquier navegador escribe https://www.tinkercad.com.
2. Haz clic en “Join Now” o “Unete ahora”.
2.2 El botén se encuentra en la parte superior derecha de la pagina.
3. Selecciona el tipo de cuenta.
3.1 Personal: Para uso individual.
4. Elige el método de registro.
4.1 Puedes registrarte usando:
® Correo electrénico y contrasefia (creando una cuenta nue-
va), o Cuenta de Google, Apple o Microsoft (inicio rapido).
5. Completa la informacién requerida.
® Nombre de usuario, correo electrénico y contrasefa.
6. Acepta los términos y condiciones.
® Marca la casilla correspondiente.
7. Verifica tu correo electrénico.

Interfaz grafica giabiaslans

Tinkercad permite simular circuitos
electrénicos y programar un Arduino
como si fuera un dispositivo real, sin
necesidad de tener componentes
fisicos.

Al ingresar con la cuenta creada a Tinkercad se muestra la pantalla principal de la
aplicacion.

Gracias a su simulador, puedes pro-
bar sensores, LEDs, motores y hasta
escribir codigo en Arduino C++ para
ver cémo funciona al instante. Esto
convierte a Tinkercad en una de las
herramientas mas accesibles y segu-
ras para aprender electrénica y robé-
tica desde cualquier computadora.

Pantalla de inicio en Tinkercad.

c m

Progresion 5

Relaciénalo con... o

En la interfaz de Tinkercad, el area
central es tu mesa de trabajo, don-
de colocas componentes, cables y
tu Arduino. Es como un banco de
pruebas digital listo para experimen-
tar. jAhi es donde tus ideas toman
formal!

¢Sabias qué...?

En la barra derecha de Tinkercad,
encontraras la biblioteca de com-
ponentes: LEDs, botones, motores,
resistencias, sensores y mas.

Solo arrastras y sueltas lo que ne-
cesitas.

Para ingresar al apartado de Circuitos, una vez en la pantalla principal es necesario
desplazarse hacia abajo donde se muestran distintas secciones como: Disefios 3D,
Circuitos y Bloques de cédigo.

Pantalla de inicio en Tinkercad en la seccién de Circuitos.

En esta seccion es donde se pueden crear disefios de circuitos con Arduino y
acceder a la simulacién de su funcionamiento. Al seleccionar la opcién Crea tu pri-
mer disefio de circuitos, se muestra la interfaz con las herramientas para construir
y programar circuitos.

Interfaz en la creacion de circuitos.

Panel de acciones: permite realizar diversas operaciones de edicién, como copiar,
pegary eliminar elementos, ademas de deshacer o rehacer cambios. También per-
mite modificar el color de las lineas y seleccionar el tipo de conexién, con opciones
como Normal, Conexién, Cocodrilo y Automatico. Adicionalmente, ofrece la posi-
bilidad de rotar los componentes para ajustar su orientacion.

Panel Simulador/Programacién: muestra el cédigo fuente correspondiente al cir-
cuito y permite ejecutar su simulacion para verificar el funcionamiento. Ademas,
ofrece la opcién de compartir el proyecto con otras personas de manera sencilla.

Area de trabajo: espacio donde se colocaran y organizaran todos los componen-
tes necesarios para construir los circuitos que se disefiaran posteriormente.

0 PENSAMIENTO COMPUTACIONAL

Categorias / Componentes: se visualiza inicialmente la categoria Basicos, donde
los componentes visibles pertenecen a dicha seccién. El panel ofrece dos opciones
principales: Basicos y Todos, ademas de un espacio dedicado a elementos especi-
ficos como placas Arduino, dispositivos Micro:bit y ensamblajes de circuitos.

Componentes basicos

Protoboard

También llamado breadboard constituye una plataforma de pruebas utilizada en
el ambito del disefio electrénico para la construccion rapida de circuitos eléctricos
temporales sin necesidad de soldadura. Su estructura modular se compone de una
matriz de perforaciones interconectadas internamente, lo que facilita la insercién
y conexion segura de componentes electrénicos de manera sencilla y eficiente.

Conexiones internas de un Protoboard.

La protoboard se organiza en distintas secciones que facilitan el montaje de cir-
cuitos:

® Zona verde: corresponde a los orificios que se encuentran interconectados in-
ternamente y que permiten insertar componentes tanto en el montaje fisico como
en el simulador de Tinkercad.

® Riel azul: forma parte de los rieles de alimentaciéon. Todos los orificios de este
riel estan conectados entre si y se utilizan para distribuir la alimentacién positiva
(+) a los diferentes puntos del circuito.

® Riel rojo: también perteneciente a los rieles de alimentacién, cuenta con orifi-
cios interconectados entre si y se emplea para establecer la alimentacién negativa
(=) o la conexiodn a tierra del circuito.

® Funcién: Limita el flujo de corriente en el circuito.
® Uso comun: Proteccién de LEDs y control de
corriente en diferentes componentes.

Resistencia
® Funcidn: Emite luz cuando circula corriente en la
direccién correcta.
® Uso comun: Indicadores visuales en proyectos
LED electrénicos.

Progresion 5

Relaciénalo con... {§}

La protoboard recibe el nombre de
breadboard porque, en sus inicios,
los ingenieros utilizaban literalmente
tablas de cortar pan para montar sus
primeros circuitos. Durante las déca-
das de 1950 y 1960, estas tablas ser-
vian como base para sujetar compo-
nentes y realizar pruebas de manera
provisional.

¢Sabias qué...?

El primer LED visible fue creado en
1962 por Nick Holonyak Jr., quien
trabajaba en General Electric.

Su luz era roja y muy tenue, pero
marcé el inicio de la iluminaciéon mo-
derna.

jHoy los LEDs estan por todas partes,
desde pantallas hasta seméaforos!

® Funcion: Resistencia variable que permite ajustar el
voltaje en un circuito.
® Uso comun: Control de brillo, volumen o velocidad

.. en motores.
Potenciémetro

® Funcién: Abre o cierra el circuito para controlar el
flujo de corriente.
® Uso comun: Encendido y apagado de dispositivos.

Switch
® Funcién: Permite el paso de corriente en una sola
direccién.
® Uso comun: Proteccién contra polaridad inversa.
Diodo
® Funcién: Almacena energia eléctrica temporalmente.
® Uso comun: Filtrado de sefales y estabilizacion de
voltaje.
® Nota: También es llamado capacitor no polarizado.
Condensador
® Funcién: Almacena energia eléctrica temporal-
mente. Solo que este condensador tiene una
terminal en positivo (+) y una negativa (-), y se
debe conectar respetando la polaridad. Caso con-
trario podria dafiarlo.
® Uso comun: Filtrado de sefiales y estabilizacion de
Condensador voltaje.
polarizado ® Nota: También es llamado capacitor polarizado.

® Funcién: Proporciona energia eléctrica al circuito,
permitiendo que los componentes del circuito
simulado funcionen.

® Uso comun: Alimentar circuitos simples con LED's y
¢Sabias qué...? Bateria 9V resistencias.

El primer condensador fue creado en
1745 y se llamé Botella de Leyden,
un curioso frasco capaz de almace-
nar carga eléctrica.

Hoy los capacitores estan en cada
fuente de poder, filtro y circuito elec-
trénico.

ijUn invento del siglo XVIII que ain
sostiene la tecnologia del siglo XXI!

m 3

Componentes de entrada

Componente Descripcion

Pulsador

Sensor de distancia
(Ultrasénico)

Teclado
(Keypad 4x4)

Conmutador
SPST

Sensor IR

Sensor de
temperatura

Sensor de
humedad

Funcién: Controlar el flujo eléctrico de manera
temporal.

Uso comin: Activar funciones especificas en pro-
yectos, como encender un led o iniciar una accion.

Funcién: Enviar pulsos ultrasénicos y calcular el
tiempo que tarda en regresar para determinar la
distancia.

Uso comin: En la deteccién de obstaculos.

Funcién: Envia sefiales al microcontrolador de
Arduino segun la tecla presionada.

Uso comun: Sistemas de seguridad, ingreso de
contrasefias y control de menUs en proyectos
electrénicos.

Funcion: Abrir o cerrar el circuito eléctrico.

Uso comun: Control basico de alimentacion de
circuitos simples. Por su siglas en inglés significa
(Single Pole Single Throw).

Funcién: Detectar la presencia de objetos,

medir distancia o recibir sefiales mediante luz
infrarroja. Esto se logra emitiendo un haz de luz IR
y analizando la reflexién o interrupcion de ese haz.
Uso comun: Deteccién de obstaculos, control
remoto y sistemas de seguridad.

Funcién: Detecta variaciones térmicas y envia datos
al microcontrolador.

Uso comun: Control de climatizacién, monitoreo
ambiental y proyectos de loT.

Funcién: Mide el nivel de humedad presente en la
tierra o sustrato, detectando conductividad entre
sus dos sondas.

Uso comun: Sistemas de riego automatizados y
monitoreo de humedad en macetas o cultivos.

Progresion 5

¢Sabias qué...?

Los sensores ultrasénicos se basan
en tecnologias desarrolladas duran-
te la Segunda Guerra Mundial para
sonar y radar.

Décadas después, se miniaturizaron
hasta convertirse en los pequefios
modulos que usan robots y Arduino.

iDe tecnologia militar... a ojos elec-
trénicos para tus proyectos!

¢Sabias qué...? -

Los primeros sensores de tempe-
ratura modernos se basan en prin-
cipios descubiertos en el siglo XIX,
cuando cientificos como Seebeck y
Thomson estudiaron como los meta-
les cambiaban con el calor.

jUn principio fisico antiguo conver-
tido en tecnologia esencial para tus
proyectos!

Para saber mas...

Escanea el cédigo QR e interactla
con la infografia Componentes de
conexion en Tinkercad.

® Funcién: Convertir la concentracion de gas en una
sefal eléctrica que puede ser interpretada por
microcontrolador como Arduino.
® Uso comun: Sistemas de seguridad para detectar
fugas de gas, alarmas domésticas y proyectos loT
Sensor de gas para monitoreo ambiental.

® Funcién: Detectar movimiento mediante la varia-
cién de radiacién infrarroja emitida por objetos
(como personas).
® Uso comun: Alarmas, sistemas de iluminacion auto-
Sensor PIR mética y seguridad.

® Funcion: Medir los niveles de iluminacion.
® Uso comun: Encendido automatico de luces, proyec-

Foto resistencia tos de ahorro energético y sensores de luz.

(LDR)

Estudiando

De forma individual elabora una tabla comparativa que te permita organizar, con-
trastar y comprender los temas de esta primera secuencia de la progresion 5.

1. En un documento digital crea una tabla comparativa incluyendo los siguientes
ejes:

Electricidad (concepto, unidades, tipos de corriente)
Electrénica (definicion, componentes basicos)

Protoboard (estructura y funcién)

Tinkercad (caracteristicas y utilidades)

Arduino (pines, alimentacién y funciones)

Conexiones eléctricas (normal, jumper, cocodrilo, automatica)

2. Organiza la informacién asegurandote que muestre: definiciones esenciales, prin-
cipales funciones, diferencias y similitudes, etc.

3. Guarda el documento con el nombre compuesto por tus iniciales seguidas de
_PC_P5_EO1.

4. Hazle llegar el documento a tu profesor por el medio que acuerden.

5.3 Programacion en Arduino

Conceptos basicos

Para trabajar con Arduino es indispensable comprender las funciones fundamen-
tales que intervienen en la programacion de proyectos. La estructura de un pro-
grama y el uso adecuado de sus instrucciones basicas constituyen la base del de-
sarrollo tanto en el entorno de simulacién de Tinkercad como en una placa fisica.

Los proyectos en Arduino se organizan en dos bloques principales de cédigo: void
setup() y void loop().

La funcién void setup() se ejecuta una sola vez al iniciar el programa y se utiliza
para configurar los pines y establecer parametros iniciales, como definir si un pin
funcionard como entrada o salida. En contraste, la funcién void loop() contiene las
instrucciones que deben repetirse de manera continua durante el funcionamiento
del dispositivo, permitiendo que el programa esté en ejecucién constante y res-
ponda a los cambios en el entorno.

Ademas de esta estructura basica, Arduino incorpora una serie de funciones esen-
ciales para interactuar con los distintos componentes electrénicos:

> pinMode(): establece el modo de operacién de un pin, definiéndolo como en-
trada (INPUT) o salida (OUTPUT). Una configuracién adecuada asegura que senso-
res, botones, LEDs u otros componentes funcionen correctamente.

> digitalWrite(): envia un valor digital a un pin configurado como salida. Puede
establecer un estado HIGH (encendido o nivel légico alto) o LOW (apagado o nivel
l6gico bajo). Es decir, al verificar el estado de un pin digital, un valor HIGH corres-
ponde légicamente al nimero 1, mientras que un valor LOW equivale al nimero 0.

> digitalRead(): lee el estado de un pin configurado como entrada y detecta si
recibe un valor digital HIGH o LOW. Es decir, al verificar el estado de un pin digital,
un valor HIGH corresponde l6gicamente al nimero 1, mientras que un valor LOW
equivale al nimero 0.

> analogWrite(): envia una sefal analdgica simulada mediante modulacién por
ancho de pulso (PWM), lo que permite, por ejemplo, variar la intensidad de un
LED o la velocidad de un motor. Los valores que puede recibir son del 0 al 1023.

> analogRead(): lee valores analégicos provenientes de sensores, devolviendo un
nimero que representa la intensidad de la sefial recibida. Los valores que puede
recibir son del 0 al 1023.

> delay(): pausa la ejecucion del programa durante un tiempo especifico expre-
sado en milisegundos. Durante esta pausa, Arduino detiene temporalmente todas
sus operaciones antes de continuar. Es Util para generar intervalos visibles entre
acciones o controlar la duracién de ciertos procesos. Por ejemplo: delay(2000),
provoca que el programa se detenga por 2 segundos, y después seguira ejecutan-
do la siguiente instruccién.

Progresion 5

Para saber mas... @

Escanea el codigo QR y observa el
video Mi primer sistema simulado en
Arduino.

Para saber mas... @

Escanea el cédigo QR y observa el
video Estructura de cédigo setup() y
loop() en Arduino.

Para saber mas... @

Escanea el cédigo QR y observa el
video Funcién de pinMode(), digi-
talWrite(), delay() en Arduino.

Para saber mas... @

Escanea el codigo QR y observa el
video Control de salidas.

También es fundamental comprender el uso de los pines de Arduino, ya que cada
uno cumple funciones especificas dentro del circuito. Los pines estan divididos en
dos categorias principales: salidas digitales, se encargan de controlar el encendido
y apagado de algiin componente; y las salidas anélogas que sirven para controlar la
intensidad como el brillo de un LED o la intensidad de un motor.

Pines de Arduino Uno R3

Conocer estas funciones facilita la correcta conexién de los componentes en la pro-
toboard y asegura un uso adecuado tanto en el simulador de Tinkercad como en el
montaje fisico del proyecto.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza lo siguiente:

1. Inicia un nuevo circuito en Tinkercad para crear un sistema simulado de encen-
dido de un LED.

2. En el drea de trabajo de Tinkercad, coloca una placa Arduino UNO R3.

3. Agrega un protoboard al drea de trabajo.

4. Coloca un LED al protoboard, verificando la polaridad del LED. Recuerda que
anodo es positivo y catodo es negativo.

5. Coloca una resistencia y ajusta al valor de ella en 220Q.

6. Realiza la conexion del anodo del LED a un pin digital de Arduino, usa el pin 13.
7. Realiza la conexion del catodo del LED al pin de tierra GND de Arduino.

8. Clic en el editor de codigo en Tinkercad y en la estructura de void setup() defi-
niremos que estamos utilizando el pin 13. Para ello escribimos el cédigo pinMo-
de(13, OUTPUT). Con esto estamos definiendo que el pin 13 serd utilizado como
un pin de salida.

9. En la estructura void loop() agregaremos primeramente las siguientes lineas de
cédigo. digitalWrite(13,HIGH) y posteriormente la linea delay(2000).

10. En la misma estructura void loop(), agrega las siguientes lineas de cédigo.
digitalWrite(13, LOW) y posteriormente la linea delay(2000).

11. Una vez concluida la construccién del circuito, ejecuta la simulacién y verifica
que su funcionamiento sea el adecuado.

12. Exporta el circuito en formato de imagen y en un documento inserta la imagen
y el cédigo creado en Tinkercad.

13. Coloca el link del proyecto de Tinkercad en una seccién del documento.

14. Guarda el documento colocando en el nombre del archivo tus iniciales segui-
das de _PC_P5_E02.

15. Hazle llegar a tu profesor el documento por el medio que acuerden para recibir
retroalimentacion.

Programacion basica en Arduino

La programacién bésica en Arduino se fundamenta en el uso de instrucciones y
estructuras derivadas del lenguaje C++, lo que permite escribir cédigo claro, orde-
nado y eficiente para controlar diversos componentes electrénicos. Este enfoque
facilita que se apliquen habilidades de programacién que no solo son dtiles en
Arduino, sino también transferibles a proyectos més avanzados en otros entornos.

El cédigo en Arduino sigue una estructura estandar compuesta por dos bloques
principales. El primero es setup(), donde se configuran los pines y parametros inicia-
les, y el segundo es loop(), donde se ejecutan de manera repetitiva las instrucciones
mientras la placa permanece encendida. Esta disposicion refleja la I6gica caracteris-
tica de C++, donde cada funcién cumple un propésito especifico y debe escribirse
siguiendo las reglas de sintaxis correspondientes, como el uso correcto de llaves,
punto y coma, mayusculas y mindsculas.

Uno de los conceptos fundamentales en la programacién con Arduino es el con-
trol de salidas, que permite enviar sefiales eléctricas desde la placa hacia distintos
dispositivos, como LEDs, zumbadores, motores o relés. Para ello, los pines deben
declararse como OUTPUT dentro de setup() mediante la instruccién pinMode(), y
luego activarse o desactivarse en el loop() utilizando funciones como digitalWrite().
La manera en que estas instrucciones se escriben y organizan sigue directamente la
sintaxis de C++, exigiendo precisién en cada linea del programa.

Cuando se trabaja con salidas multiples, el propésito es coordinar acciones simul-
tdneas o secuenciales entre varios componentes. Esto implica identificar correcta-
mente cada pin, establecer su funcién en el programa y estructurar el cédigo en un
orden légico que permita ejecutar patrones, tiempos y combinaciones especificas.
Gracias a la flexibilidad del lenguaje de programacién basado en C++, es posible
crear secuencias complejas, disefiar patrones luminosos, controlar varios actuado-
res a la vez o gestionar sistemas mas amplios como seméforos, alarmas automatiza-
das o paneles indicadores.

Area de codificacién de Arduino en Tinkercad.

Progresion 5

¢Sabias qué...?

La programacién en Arduino se basa
en el enfoque modular de C++, don-
de el cédigo se organiza en funcio-
nes que cumplen tareas especificas.
Gracias a esta estructura, puedes
dividir un proyecto en partes mas
pequefias —como controlar luces,
leer sensores o mover un motor— y
hacer que Arduino las ejecute de for-
ma ordenada.

Esta modularidad facilita entender,
depurar y ampliar tus programas, tal
como se trabaja en proyectos profe-
sionales de C++.

17

Para saber mas... @

Escanea el cédigo QR y observa el
video Lectura en Arduino.

Dominar estas bases no solo permite comprender como interactiian software y
hardware, sino que también fortalece el pensamiento légico, la resolucién de pro-
blemas y la capacidad para abstraer y modelar procesos. A medida que el estudian-
te observe cémo cada instruccién escrita en C++ modifica el comportamiento fisico
del circuito, adquiere una visién més profunda y completa del funcionamiento de
un sistema robdtico.

Ejercitando mis conocimientos

De manera individual y con la guia de tu profesor realiza lo siguiente:
Inicia un nuevo circuito en Tinkercad que resuelva lo para realizar un sistema simu-
lado de seméforo simple con LED.

1. Coloca una placa Arduino UNO R3, ademds de un protoboard en el area de
trabajo de Tinkercad.

2. Coloca tres LED al protoboard, verificando la polaridad de cada LED. Recuerda
que anodo es positivo y catodo es negativo. Ademas de cambiar el color de los
LED (amarillo, verde y rojo).

3. Coloca una resistencia de 220Q por cada LED

4. Asigna un pin digital diferente por cada LED, por ejemplo:
a. LED Verde al pin 6
b. LED Amarillo al pin 7
c. LED Rojo al pin 8

5. Realiza la conexion de los catodos de los LED al riel del GND del protoboard y
después realiza la conexion de tierra GND de Arduino.

6. Clic en el editor de cédigo en Tinkercad y en la estructura de void setup() defi-
niremos que estamos utilizando el pin 6,7 y 8. Para ello escribiremos los cédigos
para cada uno pinMode(6, OUTPUT), después pinMode(7, OUTPUT). y por dltimo
pinMode(8, OUTPUT).

7. En la estructura void loop() agregaremos primeramente las siguientes lineas de
cédigo digitalWrite(6,HIGH) y digitalWrite(8,LOW), para posteriormente la linea
delay(10000).

8. Después las siguientes dos lineas de cédifo serfan digitalWrite(7,HIGH) y digi-
talWrite(6,LOW) y posteriormente la linea delay(2000).

9. Agrega la siguientes Ultimas lineas de coédigo en la misma funcién void loop():
digitalWrite(8,HIGH) y digitalWrite(7,LOW), posteriormente agrega la linea de-
lay(5000).

10. Una vez concluida la construccion del circuito, ejecuta la simulacion y verifica
que su funcionamiento sea el adecuado.

11. Exporta el circuito en formato de imagen y en un documento inserta la imagen
y el codigo creado en Tinkercad.

12. Coloca el link del proyecto de Tinkercad en una seccién del documento.

13. Guarda el documento colocando en el nombre del archivo tus iniciales segui-
das de _PC_P5_EO03.

14. Hazle llegar a tu profesor el documento por el medio que acuerden para recibir
retroalimentacion.

5.4 Sensores y actuadores

En la robdtica educativa, los sensores y actuadores constituyen elementos esen-
ciales que permiten al robot detectar su entorno y responder mediante acciones
fisicas. Estos componentes funcionan como el vinculo entre el mundo real y el sis-
tema de control (por ejemplo, una placa Arduino), lo que hace posible desarrollar
proyectos interactivos, experimentales y auténomos.

Un sensor es un dispositivo capaz de captar magnitudes fisicas, como luz, tempe-
ratura, distancia, movimiento o presién, y transformarlas en sefales eléctricas que
pueden ser interpretadas por un microcontrolador. Debido a esta conversion, el
robot obtiene informacion del entorno y puede tomar decisiones basadas en ella.

En entornos de simulacién como Tinkercad, es posible conectar un sensor ultrasé-
nico a un Arduino para medir distancias y, a partir de esa lectura, activar un motor,
encender un LED o ejecutar cualquier accién programada. Esta interaccion permite
que se comprenda de manera guiada y visual cémo los datos proporcionados por
los sensores determinan el comportamiento del robot.

Sensores

Los sensores, también conocidos como transductores, son dispositivos capaces
de captar una magnitud fisica del entorno y convertirla en una sefal eléctrica que
pueda ser interpretada por un sistema de control.

Es decir, cada sensor esta disefiado para detectar un tipo de estimulo especifico,
como luz, temperatura, movimiento, humedad, presién u otros fenémenos am-
bientales, proporcionando asi los datos necesarios para que el sistema responda
de manera adecuada.

Tipo y uso de sensores en Arduino

> Sensor de temperatura: permite medir la temperatura del entorno y generar
una sefal eléctrica proporcional a dicha variacién. Uno de los modelos més utiliza-
dos es el TMP36, debido a su precisién y facilidad de uso en proyectos educativos
y de automatizacion. Sus aplicaciones mas comunes incluyen el monitoreo de tem-
peratura en interiores, termostatos inteligentes, alarmas contra incendios, sistemas
de refrigeracién en vehiculos y procesos de control en agricultura automatizada.
Este sensor puede registrar valores dentro de un rango aproximado de 40 °C a
125 °C, lo que lo hace adecuado para diversos entornos.

» Sensor de luz: el modelo maés utilizado es la fotoresistencia, también conocida
como LDR (Light Dependent Resistor). Este componente esté fabricado con materia-
les semiconductores cuya conductividad varia segin la cantidad de luz que reciben:
a mayor iluminacién, menor resistencia, y a menor iluminacién, mayor resistencia.

Sus aplicaciones abarcan desde la deteccién de presencia o ausencia de luz en
una habitacién, la regulacién automatica de camaras fotogréficas, la recepcion de
sefales infrarrojas en controles remotos, hasta sistemas de iluminacién automatica

Progresion 5

Conceptos clave

Microcontrolador. Pequefio circui-
to integrado que funciona como el
cerebro de un dispositivo electré-
nico. Integra procesador, memoria
y puertos de entrada y salida en un
solo chip, lo que le permite recibir
informacién mediante sensores, pro-
cesarla y activar actuadores segun el
programa que tenga cargado.

TMP36. Sensor de temperatura ana-
l6gico que convierte los cambios de
temperatura en una sefal eléctrica
proporcional, permitiendo medir va-
lores del entorno de forma precisa y
sencilla.

Fotoresistencia. Componente cuya
resistencia varia segln la cantidad
de luz que recibe: disminuye con
mayor iluminacién y aumenta cuan-
do hay poca luz. Este comporta-
miento la hace ideal para sistemas
que responden automéaticamente a
la intensidad luminosa.

Progresion 5

Conceptos clave

Transductor. Elemento que transfor-
ma una magnitud fisica (como calor
o presién) en otra forma de energia,
normalmente una sefal eléctrica.
Muchos sensores funcionan gracias
a un transductor.

Rango de medicién. Intervalo mi-
nimo y maximo en el que un sensor
puede realizar lecturas Utiles sin per-
der precision.

Sensor analégico. Emite sefales
continuas cuyo valor varia gradual-
mente, por ejemplo un LDR, un po-
tenciémetro o el TMP36.

Sensor digital. Produce sefiales dis-
cretas, generalmente de tipo encen-
dido/apagado o valores especificos.
Ejemplo: sensor PIR de movimiento
o médulos ultrasénicos.

Precision. Grado de exactitud con
el que un sensor mide una magnitud
respecto a su valor real.

Relaciénalo con... @

En la Progresiéon 5 de Cultura Digi-
tal 3, trabajaste con Scratch usando
bloques de la categoria Sensores,
como tocando color, distancia a...
o ruido, para que tu personaje reac-
cionara al entorno digital.

En robdtica ocurre algo muy pareci-
do, solo que, en lugar de un perso-
naje en la pantalla, es un robot real el
que responde al mundo fisico.

Asi como Scratch detecta cambios
en el juego, un sensor ultrasénico
mide distancias, una fotoresistencia
detecta luz y un DHT11 identifica
humedad o temperatura.

que encienden o apagan las luces segin la intensidad luminosa del entorno. Exis-
ten diversos modelos de fotoresistencias, cada uno con un nivel de resistencia
especifico que responde de manera diferente a la cantidad de luz incidente.

> Sensor de proximidad: permite detectar la presencia o distancia de objetos
cercanos, generando una sefial en funcion de la medicién realizada. El modelo mas
comun es el HC-SR04, un sensor ultrasénico capaz de medir distancias entre 2 y 450
cm con una precisién aproximada de 3 mm. Esta conformado por dos transductores
ultrasénicos: un emisor y un receptor. Entre sus aplicaciones més frecuentes se en-
cuentran la medicion de distancias, la deteccion de objetos, la verificacion del nivel
de liquidos, el mapeo de espacios y la evitacion de obstaculos en robots méviles.

» Sensor de humedad: detecta la humedad relativa del aire o de ciertos materiales
y convertirla en una sefial eléctrica interpretable por un microcontrolador. El modelo
mas utilizado es el DHT11, que incorpora un sensor de temperatura y un sensor de
humedad. Sus rangos de medicién van de 0 °C a 50 °C en temperatura y de 20 %
a 90 % en humedad, aunque presenta algunas limitaciones en precisién. Es comuin
emplearlo en estaciones meteoroldgicas caseras, sistemas de control ambiental, au-
tomatizacion del hogar y proyectos de loT. Para aplicaciones que requieren mayor
precision, existen modelos mas avanzados como el DHT21 y el DHT22.

> Sensor de sonido: permite detectar variaciones en la presién del aire pro-
ducidas por ondas sonoras y las convierte en sefiales eléctricas que pueden ser
procesadas por Arduino. Los modelos mas comunes son el KY-037 y el KY-038.
Entre sus aplicaciones destacan el control de luces mediante sonido, la creacién de
instrumentos musicales electrénicos, sistemas de seguridad y alarmas, mediciones
de ruido ambiental y proyectos interactivos.

> Sensor de gas: detecta la presencia y concentracién de gases inflamables y
de humo. El modelo MQ-2 es uno de los més utilizados y funciona gracias a un
material interno sensible a los gases, cuya conductividad eléctrica cambia al entrar
en contacto con ellos, esta variacién puede ser medida por el sensor y procesada
por Arduino para activar alarmas o sistemas de ventilacion.

> Sensor de vibracién: actlia como un interruptor sensible a impactos o mo-
vimientos bruscos, se activa al detectar vibraciones y se desactiva al mantener
reposo. El modelo SW-18015P es uno de los més empleados y se utiliza en dis-
positivos de juego, sistemas de alarma, juguetes electrénicos, electrodomésticos
y aplicaciones automotrices.

> Sensor infrarrojo (IR): mide la radiacién infrarroja emitida por los objetos para
detectar movimiento o presencia, se utiliza en sistemas de seguridad, iluminacién
automatica y domotica para identificar personas o animales. Se clasifica como un
sensor “pasivo” porque no emite energia propia; Unicamente recibe la radiacién
infrarroja del entorno y la interpreta para generar una sefial.

Conocer el funcionamiento y la correcta aplicacion de los sensores es esencial para
que un robot pueda interpretar su entorno y responder adecuadamente, los senso-
res proporcionan los datos que el microcontrolador necesita para ejecutar acciones
precisas, por lo que dominar su uso permite disefiar proyectos de robdtica mas
seguros, confiables y funcionales.

Progresion 5

Tipo y uso de sensores en Arduino

| Sensor | Funcionescomunes ___|___imogen |

Ultrasonico Deteccion de objetos, evitar
(HC-SRO4) obstaculos, medir niveles.
Fotoresistencia Control de iluminacién, alarmas

(LDR) luminosas, medicién de brillo.
Temperatura Monitoreo térmico, termostatos,
(TMP36) control ambiental.

Humedad y temperatura = Estaciones meteoroldgicas, sistemas
(DHT11) automatizados, loT.

Alarmas, proyectos interactivos,

Sensor de sonido deteccion de ruido.

Sensor infrarrojo Seguridad, iluminacién automatica,
(IR) domética.
Sensor de gas Alarmas de gas, sistemas de
(MQ-2) ventilacion, monitoreo ambiental.
Sensor de vibracién Alarmas, juguetes electrénicos,

(SW-18015P) dispositivos interactivos.
Relaciénalo con... {§}

En Tinkercad también es posible
trabajar con librerias adicionales

Por lo general, al desarrollar proyectos que incorporan sensores, no se requiere el para sensores avanzados, igual que

uso de bibliotecas especificas para su funcionamiento. Sin embargo, existen cier- en Arduino fisico. Para hacerlo, bas-

tos dispositivos, como los sensores de temperatura y humedad DHT11 o DHT12, ta con escribir manualmente en el

que si demandan la utilizacién de la biblioteca DHT.h. De manera similar, algunos codigo las lineas que incluyen cada

sensores mas especializados, como los acelerémetros y giroscopios, requieren las biblioteca, por ejemplo:

bibliotecas Wire.h y MPU6050.h, respectivamente. Estas bibliotecas deben incluir- #includhe <DHT.h> o #include
<Wire.h>.

se en las primeras lineas del cédigo del proyecto, de forma analoga a como se
procede en el lenguaje C++.

c n

Para saber mas... @

Escanea el cédigo QR y observa el
video Sensores en Arduino (ultrasé-
nico).

Para saber mas... @

Escanea el cédigo QR y observa el
video Sensores en Arduino (proximi-
dad, luz, humedad).

Ejercitando mis conocimientos

De manera individual y siguiendo las indicaciones de tu profesor, realiza lo siguiente:
Crea un nuevo circuito en Tinkercad para simular un sistema que encienda un LED
automaticamente cuando el entorno se oscurezca.

1. Coloca una placa Arduino UNO R3 y un protoboard en el 4rea de trabajo de
Tinkercad.

2. Inserta un LED en el protoboard y verifica su polaridad: recuerda que el &nodo es
positivo y el catodo es negativo. Cambia el color del LED a tu preferencia.

3. Afade una resistencia de 220 Q al LED para limitar la corriente y evitar dafios al
componente.

4. Coloca una fotoresistencia (LDR) en el protoboard. Este sensor permitira detectar
los niveles de luz del entorno.

5. Conecta la LDR formando un divisor de voltaje:
a. Conecta uno de sus terminales a 5V.
b. Conecta el otro terminal a una resistencia de 10 kQ hacia GND.
c. Desde el punto donde se unen la LDRYy la resistencia, lleva un cable hacia
el pin AO de Arduino (lectura analdgica).

6. Conecta el LED a un pin digital de Arduino, por ejemplo:
a. LED » pin7
b. Catodo del LED - riel GND del protoboard
c. Conecta también el GND de Arduino al riel de tierra del protoboard.

7. Abre el editor de cédigo en Tinkercad. En la funcién void setup(), configura el pin
7 como salida y declara el uso del pin analégico AO:
a. pinMode(7, OUTPUT);

8. En la funcién void loop(), escribe las lineas de cédigo necesarias para:
a. Leer el valor del sensor con analogRead(A0);
b. Encender el LED cuando el valor sea bajo (oscuridad)
c. Apagarlo cuando el valor sea alto (luz)

9. Ejecuta la simulacién y ajusta la iluminacién del entorno con las herramientas de
Tinkercad para verificar que el LED se enciende cuando hay oscuridad y se apaga
cuando hay luz.

10. Una vez validado el funcionamiento, exporta en formato de imagen y crea un
documento donde insertes la imagen del circuito y el codigo utilizado.

11. Coloca el link del proyecto de Tinkercad en una seccién del documento.
12. Guarda el documento nombrandolo con tus iniciales seguidas de _PC_P5_EO04.

13. Entrega el documento a tu profesor por el medio que acuerden para recibir
retroalimentacion.

Actuadores

Un actuador es un dispositivo que recibe una sefial de control generalmente eléc-
trica y la transforma en una accién fisica, ya sea movimiento, sonido, luz o vibracion.
Los actuadores pueden clasificarse segun la fuente de energia o el principio fisico
que emplean:

» Eléctricos: incluyen motores de corriente directa (DC), servomotores, relés y dis-
positivos vibradores.

» Neumaticos: funcionan mediante aire comprimido para generar movimiento.

> Hidraulicos: utilizan liquidos a presién para producir fuerza o desplazamiento.
Los actuadores también pueden clasificarse segtn la funcién que desempefan den-
tro de un sistema robdtico:

» Motores DC: convierten la energia eléctrica en un movimiento rotacional conti-
nuo, su funcionamiento se basa en la interaccion entre un campo magnético y una
corriente eléctrica, lo que genera el giro constante del eje.

Son utilizados principalmente para desplazar ruedas, accionar mecanismos sencillos
o producir movimientos repetitivos sin necesidad de un control preciso de posicién,
cominmente usados en robots moéviles y sistemas que requieren desplazamiento
sostenido.

> Servomotores: estan disefiados para controlar con gran precision la posicion
angular de un eje a diferencia de los motores DC, incorporan un sistema de retro-
alimentacién que permite conocer y corregir su posicion en todo momento. Esto
los hace esenciales para brazos robéticos, mecanismos articulados y sistemas de
direccién, donde se requiere estabilidad, suavidad y exactitud en el movimiento. Su
capacidad para mantener una posicion fija ante pequefas perturbaciones es una de
sus principales ventajas.

P Relés: funcionan como interruptores controlados eléctricamente que permiten
activar o desactivar circuitos de mayor potencia mediante sefales de bajo voltaje
provenientes de un microcontrolador, como Arduino. Operan a través de un elec-
troiman que, al recibir corriente, acciona un contacto interno y modifica el estado
del circuito externo, gracias a este mecanismo, los relés proporcionan aislamiento
eléctrico y proteccién para los componentes sensibles, y son ideales para controlar
ldmparas, motores grandes, electrodomésticos u otros dispositivos que no pueden
conectarse directamente al sistema de control.

> Bombas, valvulas y actuadores lineales: estos dispositivos transforman la ener-
gia eléctrica en movimientos especificos, como empujar, tirar, abrir o cerrar meca-
nismos. Las bombas permiten desplazar liquidos o gases y se utilizan en sistemas
de riego o proyectos hidraulicos; las vélvulas regulan el flujo de fluidos en tuberias,
mientras que los actuadores lineales convierten la energia eléctrica en un despla-
zamiento recto, Util en sistemas que requieren levantar o posicionar objetos con
precision. Estos componentes son comunes en proyectos avanzados o aplicaciones
industriales.

» Indicadores luminosos o sonoros: los indicadores como LED y zumbadores
cumplen la funcién de comunicar informacién al usuario mediante luz o sonido. Aun-
que no generan movimiento fisico, resultan esenciales para sefalizar estados, emitir
alertas o indicar procesos en curso. Los LED pueden encenderse, apagarse o variar
su intensidad, mientras que los zumbadores producen sefiales acusticas Utiles para
advertencias y notificaciones. Su sencillez y bajo consumo energético los hace am-
pliamente utilizados en proyectos educativos e interactivos.

Progresion 5

Para saber mas...

Escanea el codigo QR y observa el
video Actuadores en Arduino.

Para saber mas...

Escanea el cédigo QR y observa el
video Servomotores en Arduino.

Recurso digital .\\

Escanea el cédigo QR con las ins-
trucciones detalladas para un siste-
ma de ventilador automatizado con
sensor de temperatura.

En el &mbito de la robdtica educativa, un ejemplo representativo es el uso de un
servomotor SG90 controlado mediante Arduino para mover un brazo robético,
o la activacién de un LED o un zumbador cuando un sensor de distancia detecta
un obstéculo.

Tipo y uso de actuadores en Arduino

| Sensor Funciones comunes __imagen

Produce movimiento rotacional continuo. Se
DC Motor usa en robot méviles, ventiladores, mecanismos
simples y ruedas motrices.

Controla la posicién angular con alta precision.
Servomotor |deal para brazos robéticos, mecanismos
(SG90) articulados, direccién de robots y sistemas que
requieren movimientos exactos.

Funciona como interruptor de alta potencia con-
trolado por una sefal de bajo voltaje. Se utiliza

Realy . .
para encender |dmparas, activar motores grandes,
controlar electrodomésticos y aislar circuitos.
Produce sonidos o alertas acUsticas. Se usa en
Zumbador

alarmas, notificaciones, sistemas interactivos y

iezoeléctrico = .
P sefiales audibles.

LED / Indicador Emite luz para s'engllzauon dg estados,
advertencias, indicadores visuales o

luminoso retroalimentacién de procesos.

En la mayoria de los proyectos con Arduino, los actuadores bésicos no requieren
bibliotecas adicionales para su funcionamiento componentes como LEDs, zumba-
dores o relés pueden controlarse directamente mediante instrucciones estandar,
como digitalWrite() o analogWrite(), sin necesidad de configuraciones especiales.

Ejercitando mis conocimientos
De manera individual y siguiendo las indicaciones de tu profesor, realiza lo siguiente:
1. Creen un nuevo circuito en Tinkercad.

2. Coloca una placa Arduino UNO R3 y un protoboard en el 4rea de trabajo de
Tinkercad.

3. Escanea el cédigo QR del lado izquierdo para descargar el archivo con las indi-
caciones detalladas.

4. Exporta una imagen del circuito y elabora un documento donde insertes la ima-
gen y el cédigo utilizado.

5. Coloca el link del proyecto de Tinkercad en una seccién del documento.

6. Guarda el documento con el nombre correspondiente a tus iniciales seguido
de _PC_P5_EOS.

7. Envia tu archivo al profesor mediante el medio que hayan acordado para recibir
retroalimentacion.

Integracion de sensores y actuadores

La integracién de sensores y actuadores constituye uno de los aspectos esenciales
en el desarrollo de sistemas robéticos, ya que permite crear dispositivos capaces
de percibir su entorno y responder mediante acciones fisicas. Un sensor propor-
ciona informacién del mundo real, mientras que un actuador transforma esa infor-
macidn en una accién concreta, como mover un motor, encender un LED o activar
un mecanismo.

Esta interaccion convierte un circuito sencillo en un sistema auténomo capaz de
ejecutar tareas de manera automatica. En un proyecto robédtico, la placa Arduino
actla como el elemento central que recibe las lecturas del sensor, procesa esos
datos mediante el programa cargado y envia érdenes precisas al actuador corres-
pondiente. De esta forma, la légica del programa se convierte en el puente entre
el anélisis del entorno y la respuesta fisica del sistema.

En Tinkercad es simular cémo cambian las lecturas de un sensor en tiempo real y
verificar de inmediato la reaccién del actuador asociado, ya sea el encendido de un
LED, la activaciéon de un motor o la emisién de un sonido. Este proceso facilita la
comprensién de la relacion entre hardware y software. La simulacién de Tinkercad
también permite experimentar con sistemas como iluminacién automatica, ventila-
cién inteligente, alarmas sonoras, medidores ambientales o mecanismos de movi-
miento basico, identificando cémo las variaciones en las condiciones del entorno
influyen en el comportamiento del sistema.

Proyecto de robética con integracion de sensores y actuadores.

La integracién de sensores y actuadores no solo fortalece las habilidades técnicas
del estudiante, sino que también fomenta el razonamiento légico, la creatividad y
la resolucién de problemas. Al comprender coémo interactiian estos componentes
dentro de un circuito y cémo el cédigo determina su comportamiento, el desa-
rrollador desarrolla una visién mas completa del funcionamiento de la robdtica y
se prepara para enfrentar proyectos méas avanzados tanto en simulacién como en
hardware fisico.

Progresion 5

Para saber mas...

Escanea el cédigo QR y observa el
video Sistema integral basico.

Recurso digital .\N

Escanea el cédigo QR con las instruc-
ciones detalladas para armar el siste-
ma de alarma inteligente.

i

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en esta progresion, realiza la
actividad interactiva, ingresa a ella
escaneando el cédigo QR.

Concretando mis conocimientos

Relnete con tres compafieros mas y de manera colaborativa realicen un proyecto
en Tinkercad integrando sensores y actuadores para crear un sistema de alarma
inteligente.

1. Creen un nuevo circuito en Tinkercad.

2. Coloca una placa Arduino UNO R3 y un protoboard en el 4rea de trabajo de
Tinkercad.

3. Escanea el cédigo QR del lado derecho para descargar el archivo con las indi-
caciones detalladas.

4. Ejecuta la simulacion y ajusta la temperatura desde el panel del sensor para
verificar que el ventilador se active cuando la temperatura aumenta y se desactive
cuando baja.

5. Exporta una imagen del circuito y elabora un documento donde insertes la ima-
gen y el cédigo utilizado.

6. Coloca el link del proyecto de Tinkercad en una seccién del documento.

7. Guarda el documento con el nombre correspondiente nimero de equipo segui-
do por _PC_P5_CMC.

8. Envien su archivo al profesor mediante el medio que hayan acordado para reci-
bir evaluacion.

Instrumento de evaluacién
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluard tu programa en Tinkercad.

| mdicador | S| No | Puntos

El circuito estd correctamente armado en
Tinkercad (Arduino, protoboard, sensory 2
actuadores bien colocados).).

Las conexiones eléctricas son correctas
(polaridad, resistencias, GND/5V, entrada del 2
sensor)..

El cédigo configura correctamente los pines
en setup() y realiza la lectura del sensor.

La alarma responde adecuadamente a la con-
dicién definida (se activa y desactiva segun el 2
sensor).

El documento entregado contiene la imagen
del circuito, el codigo completo y una breve 2
explicacién del funcionamiento.

Valorando mi aprendizaje

La evaluacion es un proceso continuo de formacion, Util para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentacién y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guian en
la valoracion de los aprendizajes que adquiriste progresivamente en las secuencias
didacticas anteriores. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendi

Contesta las siguientes preguntas y reflexiona sobre tu desempefio en esta ultima
progresion..

® Describe una situacion de tu vida académica donde podrias aplicar lo apren-
dido en robdtica educativa para organizarte, resolver un problema o automatizar
una tarea.

® Piensa en un proyecto de robética que realizaste. ;Qué fue lo mas retador al
integrar sensores y actuadores y cémo resolviste ese reto?

e ,;Como te ayudd trabajar con Arduino a entender mejor cémo funcionan los
dispositivos electrénicos en la vida real? Explica con un ejemplo.

® Después de estudiar robdtica educativa, ;qué consideras que necesitas mejo-
rar o seguir practicando y por qué crees que esto serd importante para tu futuro
académico o profesional?

Actividad alternativa

Resuelve para reforzar tu aprendizaje e incrementar tu evaluacion.

Indicaciones:

1. Observa tu entorno durante 1 o 2 dias. Pon atencién en cualquier elemento
donde intervengan robots, automatizaciones, sensores, actuadores o dispositivos
inteligentes.

2. Investiga y recopila un dato curioso. Puedes investigar mediante observacion,
Internet, entrevistas o aparatos reales.

3. Crea un video donde lo expliques a profundidad. Incluye los siguientes datos:
cémo funciona, sensores involucrados, problema que soluciona y por qué te llamé
la atencion.

4. Aplica un disefio creativo y explica con claridad y orden.

5. Entrega el video a tu profesor para que evalle.

Progresion 5

Progresion 5

Avutoevaluacion

La autoevaluacién es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una v la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Nivel de dominio

Criterios En

Aun no
proceso | lo logro

Explico qué es la robdtica educativa y su utilidad en el
aprendizaje tecnolégico.
Identifica la importancia de la
robética educativa como herramien- = Reconozco la relacién entre hardware y software en proyectos
ta para comprender la interaccién de robdtica.
entre hardware y software.
Describo la forma en que Tinkercad y Arduino representan la
interaccién hardware—software.

Configuro circuitos basicos en Tinkercad con componentes
electrénicos.

Conecto correctamente salidas (actuadores) como LED, servo
o buzzer en Arduino.

Configura sistemas basicos de
automatizacién en un entorno
grafico controlando las salidas.

Utilizo el simulador para verificar que las salidas reaccionen
segun el disefio.

Comprendo el flujo de energia y sefial entre la placa Arduino
y los actuadores.

Ajusto pardmetros (dngulo de servo, intensidad, frecuencia)
cuando el circuito lo requiere.

Escribo cédigo Arduino que controla salidas mediante
digitalWrite, analogWrite o funciones especificas.

Implemento estructuras de control para responder a condiciones

del entorno.
Codifica programas con estructu-
ras de control, funciones bésicas, Programo sensores basicos (LDR, ultrasonido, botén,
bucles, sensores y actuadores en potenciémetro) e interpreta sus lecturas.

simulaciones.
Integro sensores y actuadores en una simulacién que responda
a entradas reales.

Depuro y corrijo errores en el cédigo hasta lograr una simulacién
funcional.

Lo mejor que aprendi fue:

Lo que necesito reforzar es:

desempeiio:

Evalla el desempefio general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluacién y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos falté (2) Debemos mejorar (1) m

Se organizé el trabajo, pero no se esti-
pularon tareas, prioridades o el plazo de
entrega final.

Coevaluacion

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

No hubo organizacién para realizar
nuestros trabajos.

Casi todos los miembros del equipo cum-
Cumplimos cada uno con las tareas plimos con las tareas asignadas y el plazo Un solo miembro del equipo realizd
asignadas en el plazo estipulado. estipulado; teniendo que resolver lo que a todos los productos.

otros les fue encomendado.

- . Casi todos los miembros del equipo parti- | No hubo participaciéon de los miem-
Todos participamos activamente en ;))) .

- cipamos activamente en la elaboracién de | bros del equipo en la elaboracion
la elaboracién de los productos.

los productos. de los productos.
La calidad de los productos que La calidad de los productos que elabora- No se cumplié con la calidad
elaboramos fue la adecuada para su = mos fue en su mayoria la adecuada para adecuada de los productos para su
entrega. su entrega. entrega.
Total __ de12

PENSAMIENTO COMPUTACIONAL o E

Bibliografia

Caird, O. (2005). Metodologia de la programacion. México: Alfaomega.

Caird, O. (2007). Metodologia de la programacién para Bachillerato. Alfaomega. México.
Celi, P. (2023). Fundamentos de programacién basados en PSelnt. Quito: Doxa Edition.
De Anda, C., Santiago, R., & Romero, E. (2024). Tecnologias de la informacién 3:
Laboratorio de computo Il (2.7 ed.). Direccion General de Escuelas Preparatorias-UAS.
Ediciones GYROS, S. A. de C. V. México.

De Anda, C., Santiago, R., & Romero, E. (2020). Introduccién a la programacion:
Laboratorio de computo IV (1.* ed.). Direccién General de Escuelas Preparatorias-UAS.
Ediciones GYROS, S. A. de C. V. México.

Deitel P. & Deitel H. (2014). C++ Cémo programar. (9.7 ed.). Pearson Educacién, México.

Diaz-Brito, L., & Rodriguez-Guzman, A. (2018). Pseudocédigo y programacién estructu-
rada para secundaria y bachillerato (2.7 ed.). Editorial Limusa. México.

Garcia-Molina, J., & Pérez-Campos, F. (2020). Introduccién al pensamiento computa-
cional: Algoritmos, pseudocédigo y resolucién de problemas. Ediciones Alfaomega.
México.

Joyanes, L. (2008) Fundamentos de la programacién. Espafia: McGraw-Hill

SEP (2023a). Progresiones de aprendizaje del recurso sociocognitivo Cultura digital.
SEMS. Secretaria de Educacion Publica, Subsecretaria de Educaciéon Media Superior.
Segunda edicién. Consultado el 18 de diciembre del afio 2023 en: https://educacion-
mediasuperior.sep.gob.mx/work/models/sems/Resource/13634/1/images/Progresio-

nes%20de%20aprendizaje%20-%20Cultura%20Digital(1).pdf

Shamieh, C. (2015). Electronics for Dummies. United States of America: John Wiley &
Sons, Inc.

Stroustrup, B. (2014). Programming: Principles and Practice Using C++. Crawfordsville,
Florida: Addison-Wesley.

UAS (2022). Modelo educativo Universidad Autonoma de Sinaloa.

UAS (2024). Curriculo del Bachillerato DGEP-UAS. Culiacén Rosales, Sinaloa.

Fuentes digitales
https://es.slideshare.net/slideshow/tinkercad-practicas-y-soluciones/250056857

https://www.tinkercad.com/blog/official-guide-to-tinkercad-circuits

PENSAMIENTO —
COMPUTACIONAL .

Pensamiento Computacional para el Bachillerato es un libro disefiado con O
los lineamientos del programa de estudio del mismo nombre del Plan Bachi-

llerato UAS 2024 de la Universidad Auténoma de Sinaloa. El texto se orienta

bajo los enfoques humanista y constructivista del Modelo Educativo UAS

2022, siguiendo también las directrices del Marco Curricular Comun de la

Educacion Media Superior de la Nueva Escuela Mexicana, que busca formar

una sociedad preparada para los desafios del presente y futuro.

El libro esta estructurado en cinco progresiones de aprendizaje, las cuales
buscan que los estudiantes adquieran conocimientos y habilidades para T
generar soluciones légicas y eficientes. Las progresiones incluyen:

N
Pensamiento computacional y algoritmos basicos, donde los estudiantes C e
aprenderan a descomponer problemas complejos; Algoritmia en IDE, que B
los familiarizara con entornos de desarrollo; y Programacién estructurada
en C++: Estructuras de control y Estructuras de datos, para que dominen I
la sintaxis y organizacion de datos en la programacién. Finalmente, |la progre-]
sion de Robética en simuladores virtuales les permitirda aplicar estos N
conceptos en proyectos practicos, fomentando asi la creatividad y la capaci-
dad de innovacién. I

Pensamiento Computacional fortalece la formacion integral de los
estudiantes del Bachillerato de la UAS, ayudéandoles a reconocer la impor-

tancia del desarrollo de habilidades tecnoldgicas para buscar, comunicar, |]
investigar e interactuar en entornos digitales. Mediante proyectos y activi- B
dades colaborativas e individuales, el libro promueve el desarrollo de un

pensamiento critico-reflexivo, permitiendo a los estudiantes disefar y I
elaborar contenidos digitales y soluciones tecnolégicas que les seran H

datiles en su vida cotidiana. El objetivo final es que los jévenes se convier- m
tan en individuos conscientes del uso ético y responsable de las Tecnolo-

gias de la Informacién, Comunicacién, Conocimiento y Aprendizaje Digita- (] I
les (TICCAD), capaces de generar nuevo conocimiento y promover la

reflexién critica en su entorno.

ISBN 978-970-96930-4-1

9 7789709 " 693041

