

Dr. Jesús Madueña Molina
Rector

Dra. Nidia Yuniba Brun Corona
Secretaria General

Dra. Elizabeth Castillo Cabrera
Secretaria de Administración y Finanzas

M.C. Sergio Mario Arredondo Salas
Secretario Académico Universitario

M.C. Marisol Mendoza Flores
Directora General de Escuelas Preparatorias

Dr. Damián Enrique Rendón Toledo
Secretario Académico de la DGEP

Dra. Pamela Herrera Ríos
Secretaria Administrativa de la DGEP

© D.R. Universidad Autónoma de Sinaloa, 2025
Dirección General de Escuelas Preparatorias,
Circuito interior S/N Ciudad Universitaria, C.P. 80010
Culiacán de Rosales, Sinaloa.

Título de la obra: Pensamiento Computacional
Primera edición 2026

© D. R. Universidad Autónoma de Sinaloa
Claudia De Anda Quintin
Edwin Ramón Romero Espíritu
Gibrán Uriel López Coronel
Mariela Lilián García Ramos
Rigoberto Santiago Garzón

Ni la totalidad, ni parte de esta publicación pueden reproducirse, registrarse, almacenarse, utilizarse o transmitirse, por un
sistema de recuperación de información, en ninguna forma, ni por ningún medio, sea electrónico, mecánico, fotoquímico,
magnético o electroóptico, por fotocopia, grabación, escaneo, digitalización, grabación en audio, distribución en internet,
distribución en redes de información o almacenamiento y recopilación en sistemas de información sin el consentimiento por
escrito de los propietarios de los derechos.

Impreso en Monterrey, México
Impresión 2026

Director Editorial y Producción:
Gustavo González Gallina

Director Administrativo:
Irma Vega Doñez

Diseño y diagramación:
Departamento de Arte y diseño GYROS

Foto de portada:
Shutterstock

Pensamiento Computacional
Primera edición 2026

© D. R. GYROS Editorial, S. A. de C. V. 2026
Isabel la Católica No. 642
Colonia Roma, Monterrey, N. L.
Tel. (81) 3369 0967 – 3369 0944

ISBN: 978-970-96930-4-1

3PENSAMIENTO COMPUTACIONAL

Presentación

Presentación
El libro Pensamiento computacional se construyó de acuerdo con los lineamien-
tos didáctico-pedagógicos del Programa de estudios de la unidad de aprendizaje
curricular del mismo nombre del Plan de estudios Bachillerato UAS 2024, emitido
por la Dirección General de Escuelas Preparatorias de la Universidad Autónoma
de Sinaloa.

El Programa de estudios en mención, se orienta con los enfoques humanista y
constructivista del Modelo educativo UAS 2022 y con los lineamientos de la Nueva
Escuela Mexicana, que buscan la construcción de una sociedad con fundamento
en el humanismo y en la ciencia; además de orientarte hacia el desempeño idóneo
en los diversos contextos culturales y sociales, hacerte protagonista de tu propio
proceso de aprendizaje partiendo del desarrollo y fortalecimiento de tus habili-
dades cognoscitivas y metacognitivas e incorporarte a la Educación Superior o al
mundo laboral. Asimismo, se enfatizan las estrategias didácticas oportunas para
que adquieras conocimientos y experiencias acordes a las exigencias presentes y
futuras, derivadas de los rápidos cambios tecnológicos que transforman a la socie-
dad, haciendo imprescindible dotarte, en la medida de lo posible, de habilidades
tecnológicas y de la utilización de herramientas digitales, que te faciliten el acceso
y el análisis de información, y que te permiten comunicar, divulgar, socializar, mo-
delar, crear, simular, manipular, interactuar e investigar.

En ese sentido, los principios pedagógicos de los contenidos del presente título
se alinean con un enfoque educativo colaborativo, adaptable a las realidades y
contextos, además promueven un aprendizaje activo y reflexivo planteado a través
de metodologías activas y participativas, basabas en la indagación y el descubri-
miento de conocimientos en pro de que desarrolles capacidades analíticas, críticas
y reflexivas.

Los contenidos de la obra se diseñan bajo un modelo que desarrollarás progre-
sivamente y te guiarán al logro de las metas, de manera que el desarrollo de tus
habilidades y la construcción de tu aprendizaje se plantean trabajarlas en cinco
progresiones, a través de las cuales identificarás e implementarás las fases del pen-
samiento computacional resolviendo problemas cotidianos y académicos median-
te la construcción de algoritmos en un entorno de desarrollo integrado y el lengua-
je de programación estructurada C++, utilizando estructuras decisivas e iterativas
para automatizar procesos, manipular conjuntos de datos, validar la solución de
manera digital y determinar la ejecución de instrucciones de manera organizada
y eficiente. Además, simularás sistemas robóticos mediante aplicaciones gráficas
y la programación en Arduino con funciones elementales, control de salidas y el
uso de sensores y actuadores para resolver problemas simples de automatización.
Para cumplir con estos propósitos académicos no bastará el conocimiento y la
comprensión de los conceptos expuestos en esta obra, sino también en que re-
suelvas actividades que te llevarán a la reflexión y autoanálisis, para que examines
tu propio proceso de aprendizaje, revises tus fortalezas y debilidades vividas du-
rante el proceso de aprendizaje y así transformar y mejorar tu vida y el entorno
social, económico y profesional en el que te desarrollas.

5PENSAMIENTO COMPUTACIONAL

Agradecimientos

Agradecimientos
Nuestro sincero reconocimiento a los docentes integrantes del cuerpo colegiado
de la disciplina de Informática de la Dirección General de Escuelas Preparatorias
de la Universidad Autónoma de Sinaloa, quienes colaboraron en la elaboración de
recursos didácticos para este libro de texto.

Gracias, colegas por compartir con la comunidad educativa y con cada generación
de estudiantes del Bachillerato universitario, sus conocimientos, creatividad y ex-
periencia, plasmados en este recurso didáctico.

Ángel Sánchez Díaz

Eduin Alejandro Laveaga Corrales

Eva Angelina Martínez Campaña

Francisco Eduardo Aispuro García

Frida Bibiana Ñonthe Ortiz

Gabriela Avendaño Sainz

Jesús Alfredo Ramírez Aviña

Jesús González Aldaz

Jesús Ignacio Hernández García

Jesús Miguel Almeida Muñoz

Luis Alfredo Ramírez Aviña

Mariela Lilián García Ramos

Nadya Rocío Galaviz Heredia

Oscar Urías Fierro

Raquel Villa Núñez

Rosario Garnica Núñez

Sabby Carolina Hernández Gárate

6 PENSAMIENTO COMPUTACIONAL

Índice

Presentación								 3
Agradecimientos								 5
Tu Libro									 8

Progresión 1. Bases del pensamiento computacional			 10

	 1.1 Inicios de la algoritmia						 12
		 1.1.1 Orígenes del pensamiento computacional		 12

	 1.2 Fases del pensamiento computacional				 14
		 1.2.1 Identificación del problema				 15
		 1.2.2 Descomposición del problema			 16
		 1.2.3 Reconocimiento de patrones				 18
		 1.2.4 Abstracción					 20
		 1.2.5 Diseño de algoritmo					 22
		 1.2.6 Implementación					 25
		 1.2.7 Evaluación						 26

		 Concretando mis conocimientos				 28
		
Progresión 2. Algoritmia en IDE			 			 30

	 2.1 Aplicación en entorno de desarrollo integrado			 32
		 2.1.1 Interfaz						 32
		 2.1.2 Componentes del pseudolenguaje			 33
			 2.1.2.1 Variables					 34
			 2.1.2.2 Constantes				 34
			 2.1.2.3 Tipos de datos				 34
			 2.1.2.4 Operadores				 35
			 2.1.2.5 Acciones primitivas secuenciales		 36

	 2.2 Estructuras de control						 37
		 2.2.1 Estructura Secuencial				 37
		 2.2.2 Estructuras Condicionales				 38
			 2.2.2.1 Simple					 39
			 2.2.2.2 Doble					 40
			 2.2.2.3 Anidada					 42
			 2.2.2.4 Segun…Hacer				 45
		 2.2.3 Estructuras Repetitivas				 47
			 2.2.3.1 Mientras...Hacer				 47
			 2.2.3.2 Repetir...Hasta Que			 49
			 2.2.3.3 Para...Hasta...Con Paso			 51

		 Concretando mis conocimientos				 54
		 Valorando mi aprendizaje					 56
		 Autoevaluación y Coevaluación				 57	
				
Progresión 3. Programación estructurada en C++: Estructuras de control	 58

	 3.1 Lenguajes de programación 					 60
		 3.1.1 Historia de los lenguajes de programación		 60
		 3.1.2 Clasificación de los lenguajes				 62
		 3.1.3 Editores de código					 63

	 3.2 Estructura básica de un programa en C++			 66
		 3.2.1 Programación estructurada				 66
		 3.2.2 Lenguaje C++					 67	

7PENSAMIENTO COMPUTACIONAL

Índice

		 3.2.3 Sintaxis y elementos básicos				 67
		 3.2.4 Variables y tipo de datos				 68
		 3.2.5 Entrada y salida de datos				 69
		 3.2.6 Operadores en C++					 70

	 3.3 Estructuras de control						 71
		 3.3.1 Estructuras Condicionales				 72
			 3.3.1.1 If					 72
			 3.3.1.2 If-else					 72
			 3.3.1.3 If-else if					 73
			 3.3.1.4 Switch-case				 75
		 3.3.2 Estructuras Repetitivas				 76
			 3.3.2.1 For					 76
			 3.3.2.2 While					 77
			 3.3.2.3 Do while					 78

		 Concretando mis conocimientos				 79

Progresión 4. Programación estructurada en C++			 	 80

	 4.1 Estructuras de datos						 82
		 4.1.1 Arreglos unidimensionales				 83
			 4.1.1.1 Declaración				 83
			 4.1.1.2 Inserción de datos				 85
			 4.1.1.3 Acceso					 86
			 4.1.1.4 Operaciones				 88

		 Concretando mis conocimientos				 95
		 Valorando mi aprendizaje					 97
		 Autoevaluación y Coevaluación				 98

Progresión 5. Robótica educativa					 	 100	

	 5.1 Introducción a la robótica					 102
		 5.1.1 Historia						 102
		 5.1.2 Conceptos básicos de electricidad y electrónica	 104
		 5.1.3 Aplicaciones					 107

	 5.2 Aplicación Tinkercad						 109
		 5.2.1 Interfaz gráfica					 109
		 5.2.2 Componentes básicos				 111
		 5.2.3 Componentes de entrada				 112

	 5.3 Plataforma Arduino 						 115
		 5.3.1 Conceptos básicos					 115
		 5.3.2 Programación básica en Arduino			 117

	 5.4 Sensores y actuadores						 119
		 5.4.1 Sensores						 119
		 5.4.2 Actuadores						 122
		 5.4.3 Integración de sensores y actuadores			 125

		 Concretando mis conocimientos				 126
		 Valorando mi aprendizaje					 127
		 Autoevaluación y Coevaluación				 128

Bibliografía								 130

8 PENSAMIENTO COMPUTACIONAL

Tu Libro

Conoce tu Libro

El libro Pensamiento computacional, ha sido diseñado como recurso didáctico para la asignatura del mismo nombre, la cual está
inserta en el cuarto semestre del mapa curricular del Plan Bachillerato UAS 2024 de la Universidad Autónoma de Sinaloa.

La obra está conformada por cinco secuencias didácticas que progresivamente abordarán los temas ayudándote en la integración
de saberes y el desarrollo de tus habilidades. Cada una de ellas está constituida por contenidos y diferentes tipos de actividades de
aprendizaje, dispuestas para que adquieras y apliques tus conocimientos; asimismo evidencies el desempeño y el nivel de logro de
las metas enmarcadas en los aprendizajes de trayectoria del programa de estudios de la asignatura.

Los componentes del libro son:

u Entrada de la secuencia
En esta sección se presenta la progresión de aprendizaje que
será abordada en la secuencia y las metas a lograr en el trayecto.

Recuperando lo que sabemos. Es un cuestionario de evalua-
ción diagnóstica que debes responder antes de abordar cada
progresión de aprendizaje, es útil para que recuperes tus sabe-
res y reconozcas tus fortalezas acerca de los temas que estudia-
rás en cada secuencia. Este tipo de actividad no representa una
valoración numérica en tu evaluación.

u Secuencia por progresión
Reactivando mis conocimientos. Al inicio de cada secuencia
didáctica de las progresiones, se presenta una situación o pro-
blemática con preguntas que te guiarán a relacionar tus conoci-
mientos previos con los temas a estudiar.

Desarrollo del tema. Es el apartado que contiene el discurso
escrito de los temas y las actividades que te ayudarán a traba-
jar de manera individual y colaborativa en el desarrollo de tus
habilidades y a poner en práctica tus saberes. En el desarrollo
se incluyen secciones y cápsulas que te permitirán descubrir tus
actitudes y manifestarlas en la evaluación.

u Tipos de actividades
Estudiando. En algunas ocasiones va a ser necesario que reali-
ces actividades fuera de clase, que te ayudarán a prepararte para
el tema que se abordará o que refuerces lo practicado. Es muy
importante que atiendas las indicaciones y realices las tareas.

Ejercitando mis conocimientos. Este tipo de actividades refie-
ren a prácticas a desarrollarse durante las clases, en el centro de
cómputo con la guía del profesor. Su ponderación representa un
alto porcentaje en tu evaluación.

Concretando mis conocimientos. Son actividades de aprendizaje
interrelacionadas y orientadas para que las trabajes de manera
autónoma. Están diseñadas para que realices procedimientos
que te encaminan a evidenciar el nivel de logro de las metas

9PENSAMIENTO COMPUTACIONAL

Tu Libro

propuestas en cada progresión. Al finalizar cada progresión encontrarás una actividad
de este tipo. También tienen asignado un alto valor en la evaluación, por lo que es im-
portante atender la retroalimentación que te haga el profesor, mejores la evidencia de
acuerdo con las observaciones hechas y reenvíes para su revaloración.

Actividades alternativas. A lo largo del curso, en tres momentos distintos, encontrarás
estas actividades que son complementarias o de recuperación, en su mayoría son pro-
puestas que derivan de la retroalimentación. En el caso que tengas interés de mejorar
tu evaluación, puedes solicitar al profesor que te indique en qué momento realizarlas.

u Valorando mi aprendizaje
Reflexionando lo que aprendí. Como parte de la evaluación metacognitiva, en tres
momentos del curso, se te solicitará respondas algunas preguntas que implica re-
flexiones acerca de tu propio proceso de aprendizaje, para concretar los conocimien-
tos y seas consciente de ello. No representan una valoración en tu evaluación final,
por lo que puedes responderlas lo más sincero posible.

Autoevaluación. En el apartado de Valorando lo que aprendí, encontrarás instrumentos
que te ayudarán a medir tu nivel de dominio de los aspectos de aprendizaje de las metas.
Son útiles para ayudarte a regular tu aprendizaje, te indicarán cuáles ajustes necesitas
hacer para reforzar lo aprendido.

Coevaluación. La evaluación entre pares ayuda en el proceso de aprendizaje cola-
borativo, por lo que en este libro se integran instrumentos para que evalúes el des-
empeño general de tu equipo de trabajo durante el desarrollo de las actividades de
aprendizaje colaborativas.

u Cápsulas

Conceptos clave. Son empleadas para definir conceptos que es importante
domines para comprender los temas.

Relaciónalo con…. Describe información más profunda del tema para que
establezcas su vínculo con otras unidades de aprendizaje curricular, con tu
vida cotidiana o tu comunidad.

Para saber más. Con estas cápsulas se accede a videotutoriales, presen-
taciones interactivas, infografías, entre otros, para ampliar alguna explicación
del tema en cuestión.

¿Sabías qué…? Son cápsulas con información adicional, interesante o
datos curiosos que actualizarán tu aprendizaje en torno a las herramientas
digitales.

Recurso digital. Se incluyen en algunas secciones del libro y están referidos
a recursos didácticos como formatos y plantillas con indicaciones o
cuestionarios interactivos, útiles para que evidencies tu aprendizaje.

10 PENSAMIENTO COMPUTACIONAL

Identifica qué es el pensamiento computacional y lo aplica en la representación de soluciones a problemas cotidianos
mediante algoritmos básicos (pseudocódigo, diagramas de flujo), considerando su contexto y recursos disponibles.

Tiempo estimado: 9 horas

Tus metas serán:
• Identificar los principios del pensamiento computacional, su descomposición, abstracción y patrones para diseñar,

implementar y evaluar algoritmos de problemas de su vida cotidiana.

• Representar la solución de problemas mediante pensamiento algorítmico seleccionando métodos, diagramas o
técnicas.

• Aplicar lenguaje algorítmico utilizando medios digitales para resolver situaciones o problemas del contexto.

Bases del Pensamiento
Computacional Pr

og
re

si
ón

1

Recuperando lo que sabemos

Este cuestionario es de recuperación de conocimientos previos, es útil para identificar tus saberes y habilidades y cómo
los relacionas con la realidad, además te ayudará a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar cómo entiendes o aplicarías cada situación, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio. .

1. En tus propias palabras ¿qué significa pensar como una computadora? ¿crees que las personas pueden hacerlo?

2. ¿Has usado alguna vez programas o plataformas donde tengas que dar instrucciones? Describe tu experiencia.

3. ¿Por qué crees que es importante aprender a resolver problemas de manera ordenada o lógica, incluso sin usar una
computadora?

4. Imagina que tuvieras que crear un robot o aplicación para ayudar en tu escuela o comunidad ¿Qué problema te gustaría
que resolviera y cómo te imaginas que lo haría?

11PENSAMIENTO COMPUTACIONAL

Progresión 1

Reactivando mis conocimientos

El pensamiento computacional es un término que no sólo aplica a computadoras, sino también a la vida real. Aplicarlo implica
descomponer problemas complejos en partes más pequeñas y manejables. Es como desmontar un rompecabezas para
comprender cómo encajan las piezas, esta habilidad permite abordar cualquier problema de una manera estructurada y lógica.

Analiza la serie de las cinco imágenes que siguen tres patrones independientes y recurrentes:

1. Trata de responder las siguientes preguntas:

	 • ¿Cuál es el problema central?
	 • ¿Qué tareas lo componen?
	 • ¿Qué patrones o repeticiones identificas?

2. Identifica la regla de cada uno de los tres patrones.
3. Describe y dibuja las características exactas de la imagen número 6 siguiendo con el patrón.
4. Compartan su respuesta, para que el profesor vincule el proceso con las fases del pensamiento computacional:

	 a. Identificar – entender el problema
	 b. Descomponer – dividirlo
	 c. Reconocer patrones - encontrar regularidades
	 d. Abstraer – quedarse con lo esencial

.

12 PENSAMIENTO COMPUTACIONAL

Progresión 1

Relaciónalo con...

Estudios y revisiones han señalado
que el Pensamiento computacional
mejora la capacidad de resolución
de problemas cuando se integra de
forma articulada en educación pri-
maria y secundaria. En México, la
SEP ha comenzado a integrarlo en
educación básica y media superior
para promover habilidades como el
razonamiento lógico, la creatividad,
la toma de decisiones y el trabajo
colaborativo, desafíos del siglo XXI.

En estos tiempos, donde la tecnología transforma cada aspecto de nuestras vidas,
el pensamiento computacional se ha convertido en una competencia esencial para
cualquier persona que enfrenta problemas complejos en su vida diaria o profesio-
nal. Esta habilidad permite a los estudiantes abordar cualquier problema complejo
de manera lógica, estructurada y eficiente, utilizando herramientas propias de la
informática, pero aplicables a cualquier disciplina.

Contrario a lo que se puede creer el pensamiento computacional no se limita a la
programación, es una forma de pensar que implica descomponer problemas, reco-
nocer regularidades, abstraer lo esencial y formular pasos claros, es decir, algorit-
mos que conduzcan a soluciones repetibles y verificables. Formalmente se puede
decir que el Pensamiento computacional es un conjunto de procesos cognitivos
y estrategias para formular, analizar y resolver problemas de manera que puedan
ser resueltos por una persona, una computadora o una combinación de ambos.

Orígenes del pensamiento computacional
La columna vertebral del pensamiento computacional es el algoritmo, término que
asociamos con la informática y que ha sido una práctica milenaria usada para des-
cribir pasos al resolver problemas.

Un algoritmo es un conjunto finito y ordenado de instrucciones, pasos o reglas
bien definidas, que permite solucionar un problema. Sus características clave son:

Preciso Ordenado Finito Definido Concreto

Con pasos
planteados de
forma objetiva
y sin ambi-
guedades.

Secuencia
debe ser clara
y precisa.

Tener un
número deter-
minado de
pasos.

Con mismos
datos produ-
cir el mismo
resultado.

Ofrecer una
solución espe-
cifica.

La algoritmia o el arte de diseñar algoritmos ha acompañado a la humanidad desde
que se empezó a sistematizar la resolución de problemas. Se tiene a los babilonios
y los Sumerios, quienes desde el año 3000 a,C. utilizaban técnicas algorítmicas

1.1 Inicios de la algoritmia

13PENSAMIENTO COMPUTACIONAL

Progresión 1

Para saber más…

Accede al video Inicios de la algorit-
mia, para ampliar la explicación del
tema. Hazlo escaneando el Código
QR.

¿Sabías qué…?

Existen algoritmos que imitan pro-
cesos naturales como Algoritmos
genéticos, basados en la evolución
biológica; Colonia de hormigas,
para encontrar rutas óptimas; Algo-
ritmos de enjambre de partículas,
inspirados en el comportamiento de
aves o peces. Todos estos se usan en
inteligencia artificial, robótica y opti-
mización.

para realizar cálculos en tablillas de arcilla, como multiplicaciones o la estimación
de raíces cuadradas. En la antigua Grecia el matemático Euclides describió el fa-
moso Algoritmo de Euclides, un procedimiento para encontrar el Máximo Común
Divisor (MCD) de dos números.

El salto a la Era de la computación

En el siglo XX se dio la formalización de algoritmos y en el siglo XXI los expertos
en educación propusieron enseñar el pensamiento computacional desde edades
tempranas, considerándola una habilidad tan fundamental como leer y escribir.
Hoy día se exploran formas de integrarlo con otras disciplinas bajo el enfoque
STEAM (Ciencia, Tecnología, Ingeniería, Arte y Matemáticas).

El concepto de la algoritmia se fusionó con la informática gracias a piones visio-
narios como:

u Ada Lovelace, quien es considerada la primera programadora de la historia al
trabajar con la Máquina Analítica de Charles Babbage, en 1842 escribió lo que hoy
se conoce como el primer algoritmo informático, diseñado para que la máquina
calculara la secuencia de números de Bernoulli.

u George Boole desarrolló el Algebra de Boole o Algebra Booleana, un sistema
que describe el pensamiento lógico usando solos dos valores: verdadero y falso
(0/1). Este es el fundamento lógico de toda la programación y la codificación di-
gital actual.

u Alan Turing, en 1936 formalizó el concepto teórico de algoritmo con su modelo
de la Maquina de Turing, una abstracción matemática de una computadora que
puede ejecutar cualquier algoritmo. Durante la Segunda Guerra Mundial con su
trabajo se descifraron códigos, esto fue clave en descomposición de problemas y
el diseño algorítmico.

u John Von Neumann propuso la Arquitectura Von Neumann en el 1945. Este
modelo permite a las computadoras almacenar en la misma memoria tanto el pro-
grama (el algoritmo) como los datos, importante para los algoritmos ejecutables.

Desde estos cimientos, la algoritmia ha evolucionado hasta convertirse en la base
de la Inteligencia Artificial y otras aplicaciones usadas diariamente.

Relación entre algoritmo y pensamiento computacional

La formalización del pensamiento lógico y algorítmico consolidó la genealogía his-
tórica y las múltiples dimensiones del pensamiento computacional, con los méto-
dos computacionales, ingeniería de software, ciencias computacionales y diseño.

De manera que el pensamiento computacional enseña a pensar en términos
algorítmicos (estructura, repetición, condiciones, modularidad), pero también en
capacidades previas como formular el problema y evaluar resultados. Así pues el
diseño del algoritmo es una de las practicas centrales del pensamiento computa-
cional, dado que implica traducir una solución conceptual a pasos claros, verifica-
bles y si es posible, ejecutables por una computadora.

14 PENSAMIENTO COMPUTACIONAL

Progresión 1

Relaciónalo con...

La Segunda Guerra Mundial fue un
punto de inflexión para la compu-
tación moderna, Turing y su equipo
en Bletchley Park desarrollaron téc-
nicas computacionales avanzadas
para descifrar mensajes cifrados, un
proceso que implicaba descomposi-
ción de problemas, reconocimiento
de patrones y diseño de algoritmos;
todas fases del pensamiento compu-
tacional.

Recurso digital

Escanea el QR para acceder a la in-
fografía Estrategias de comprensión
lectora.

Entender mejor el mundo digital que nos rodea, por ejemplo cómo funcionan las
redes sociales, cómo se procesan los datos personales o por qué cada aplicación
actúa de cierta manera ayuda a tomar decisiones informadas y seguras, además, la
sociedad demanda adaptabilidad a los constantes cambios de las formas de pro-
ducir e interactuar. Ante este contexto dinámico, el pensamiento computacional
provee herramientas cognitivas que ayuden a analizar contextos de forma inmedia-
ta, evaluar diferentes escenarios y tomar decisiones informadas para automatizar
procesos repetitivos.

El pensamiento computacional no es un paso único, sino un proceso cíclico y es-
tructurado que consta de varias etapas interconectadas que facilitan la resolución
de problemas:

Estas fases no son lineales, sino que forman un ciclo constante donde la evaluación
y el refinamiento pueden llevar a reajustar la descomposición, la abstracción o el
diseño del algoritmo.

Estudiando --
Dedica un tiempo a la lectura de las páginas correspondientes a los temas de
Fases del pensamiento computacional. Realizar esta tarea, te facilitará el apren-
dizaje y realizar las actividades que el profesor guiará en las siguientes sesiones.

Apóyate en alguna estrategia de lectura que te ayude a mejorar la comprensión
lectora. Con el recurso digital de al lado puedes conocer algunas.

1.2 Fases del pensamiento computacional

15PENSAMIENTO COMPUTACIONAL

Progresión 1

Identificación del problema

Esta primera fase es crucial, conlleva formular de la manera más precisa posible
para que las herramientas de tecnología puedan ayudar a encontrar la solución.

Por tanto, antes de buscar una solución es imprescindible comprender los requisi-
tos, las limitaciones y los objetivos del problema en cuestión, entender el desafío a
descifrar. Una buena identificación separa hechos de supuestos y enuncia criterios
de éxito medibles.

Componentes de la fase de identificación

u Análisis del problema. Se examina el problema en profundidad para entender
todos sus aspectos. Esto implica identificar las necesidades, restricciones y objeti-
vos que debe cumplir la solución.

u Definición de los elementos. Se especifican claramente los componentes del
problema, incluyendo:

u Estado inicial, es decir, la situación de partida o los datos de entrada disponibles.

u Estado objetivo, que refiere a la solución deseada o resultado final que se
espera.

u Condiciones y restricciones, donde cualquier limitación o regla debe ser res-
petada por la solución.

u Determinación de la naturaleza computacional. Se evalúa si el problema
puede ser resuelto paso a paso por una computadora. Algunos problemas pueden
ser de decisión, con respuestas de sí o no, o bien de optimización, donde se busca
la mejor solución.

Ejemplo de la fase de identificación de un problema

Considérese el problema de “encontrar la ruta más rápida para llegar a un destino”.

1. Análisis del problema: un individuo necesita una forma eficiente de planificar
un viaje. El problema no es solo llegar, sino hacerlo en el menor tiempo posible,
evitando el tráfico o los retrasos.

2. Definición de los elementos:
	 a. Estado inicial: la ubicación actual de la persona.
	 b. Estado objetivo: la dirección del destino final.
	 c. Condiciones y restricciones: la ruta debe considerar datos en tiempo
	 real como el tráfico, la velocidad de las carreteras, posibles desvíos y el
	 tipo de transporte.

3. Identificación de la naturaleza computacional: este es un problema ideal para
una solución computacional, ya que se puede representar como un grafo con no-
dos (ubicaciones) y aristas (carreteras), y se puede usar un algoritmo para encontrar
el camino más corto.

¿Sabías qué…?

En el mundo del emprendimiento y
la tecnología, la fase de identifica-
ción no se llama simplemente “en-
contrar un problema”, sino “definir
una oportunidad de mercado”. Los
innovadores más exitosos no inven-
tan cosas nuevas; simplemente iden-
tifican una fricción o un dolor que
tiene la gente y luego usan el pen-
samiento computacional para crear
una solución eficiente.

16 PENSAMIENTO COMPUTACIONAL

Progresión 1

Recurso digital

Escanea el QR para descargar el ar-
chivo del problema Piso gamer del
salón de baile.

La fase de identificación es tan crítica que se compara a menudo con la Abstrac-
ción (cuarto pilar del pensamiento computacional), pero es necesario ignorar los
síntomas para concentrarse en la causa de la raíz del problema. Por ejemplo, si
un estudiante dice: mi problema es que no tengo suficiente tiempo para estudiar;
la solución obvia sería que programara un horario de estudio, pero esta solución
podría fallar, porque el verdadero problema podría ser: me distraigo fácilmente y
no priorizo tareas. De ahí que la identificación incorrecta de un problema es la prin-
cipal razón por que proyectos tecnológicos complejos y muy costosos fracasan.
Los programadores resuelven perfectamente lo que se les pide, pero si la petición
original no abordaba la verdadera necesidad, el resultado final es inútil.

Por tanto, no identificar el problema correcto es programar una solución equivocada.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza la siguiente actividad:
Preguntas de identificación del problema.

1. Descarga el archivo del problema Piso gamer del salón de baile escaneando el
código QR de al lado.

2. Analiza el problema y responde las siguientes preguntas que ayudan a la iden-
tificación del problema:

	 a. ¿Cuál es el objetivo del problema?
	 b. ¿Qué datos conoces desde el inicio?
	 c. ¿Qué información falta por descubrir?
	 d. ¿Cuál será el resultado que se quiere obtener?

3. Guarda tus respuestas en un documento de Word usando en el nombre tus
iniciales seguidas de _PC_P1_E01.

4. Hazlo llegar a tu profesor por el medio que acuerden para que evalúe tus
respuestas.

Descomposición del problema

Una vez que se ha completado la fase de identificación se procede a la siguien-
te etapa, la descomposición, que consiste en dividir el problema complejo o un
sistema grande en partes más pequeñas, manejables e independientes, es decir,
en subproblemas o módulos más sencillos de resolver de forma individual. En una
situación sencilla como hornear un pastel, los subproblemas son preparar la masa,
hornear y decorar.

17PENSAMIENTO COMPUTACIONAL

Progresión 1

¿Sabías qué…?

La necesidad de descomponer pro-
blemas complejos se popularizó du-
rante la Segunda Guerra Mundial, no
en la programación, sino en la inge-
niería de sistemas. Proyectos enor-
mes como el diseño de submarinos
eran imposibles de manejar por una
sola persona o un solo equipo. Los
ingenieros dividieron el proyecto en
sistemas más pequeños e interco-
nectados. Esto dio origen al concep-
to de “modularidad” demostrando
que cualquier meta gigante, desde
construir un cohete hasta diseñar
una app, solo se logra si se divide en
módulos que funcionan de manera
independiente pero armónica.

Se puede decir que identificar el problema es el paso inicial para la descomposición.

Se recomienda llevar a cabo esta fase planteándose preguntas como:

	 • ¿Qué subproblemas o tareas lo componen?
	 • ¿Qué se necesita para resolver cada uno de ellos?

Ejemplo de la fase de descomposición de un problema

A la gente le cuesta mucho encontrar un taxi libre en la calle.

Descomposición:
• Subproblema 1:
¿Cómo saber dónde están los taxis? requiere GPS.

• Subproblema 2:
¿Cómo comunicar al conductor que necesito uno? requiere una app de solicitud.

• Subproblema 3:
¿Cómo pagar de forma segura? requiere un sistema de pagos integrado.

El Resultado:
Servicios como Uber o DiDi que nacen de la correcta identificación y descom-
posición de la frustración de buscar un taxi, convirtiéndolo en un algoritmo de
conexión eficiente.

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje realiza de manera individual y con la guía de tu profe-
sor la siguiente actividad:

Tabla de descomposición de problemas.

1. Aplica la fase Descomposición al problema Piso gamer del salón de baile.

2. Abre el documento de Word de Identificación del problema de la actividad
anterior e inserta una tabla con el siguiente formato y responde en las celdas las
respuestas necesarias a cada pregunta.

Subproblema Descripción ¿Qué se necesita
para resolverlo? Posible resultado

3. Guarda el archivo usando en el nombre tus iniciales seguidas de _PC_P1_E02 y
compártela con tu profesor por el medio que acuerden.

18 PENSAMIENTO COMPUTACIONAL

Progresión 1

Reconocimiento de patrones

Es un paso clave para pasar de la comprensión del problema a la creación de una
solución automatizada y generalizable.

El reconocimiento de patrones se hace identificando tendencias, estructuras,
conexiones, semejanzas o regularidades entre las partes, esto es, en los datos o
problemas, para resolverlos de manera más eficiente. Su importancia radica en
que permite reutilizar soluciones pasadas o aplicar una técnica probada a varios
subproblemas y no tener que reinventar la rueda cada vez que se enfrentan a una
nueva situación. Lo que representa un enorme ahorro de tiempo y esfuerzo.

Al encontrar patrones, se pueden simplificar problemas complejos, crear soluciones
repetibles y generalizar la resolución de problemas similares, por ejemplo, reconocer
que todos los gatos tienen cola, ojos y pelaje permite dibujar un gato básico y luego
añadir detalles específicos, en lugar de tener que definir cada gato desde cero.

El reconocimiento de patrones puede hacerse con esta guía:

1. Identificación de similitudes: usando la habilidad de ver lo que es igual o repe-
titivo en diferentes situaciones.

2. Simplificación de problemas: identificando patrones entre los problemas pe-
queños en los que se ha descompuesto uno complejo, lo que facilita su compren-
sión y resolución.

3. Resolución eficiente: creando soluciones repetibles para problemas similares,
como usar un bucle para repetir una acción en programación en lugar de escribir
el mismo código una y otra vez.

4. Generalización: haciendo predicciones y generalizando soluciones a partir de
un conjunto de datos.

Ejemplo de la fase de reconocimiento de patrones

El docente escribe en el pizarrón las siguientes secuencias:
1. 	 2, 4, 8, 16, 32, …
2. 	 1, 1, 2, 3, 5, 8, 13, …
3. 	 A, C, F, J, O, …

Los estudiantes deben encontrar la regla o patrón que explica cómo se genera
cada secuencia.

Preguntas guía:
Discuten cómo reconocer una regularidad para predecir el siguiente valor y gene-
rar un algoritmo. Se apoyan respondiendo:

	 • ¿Qué relación hay entre un número (o letra) y el siguiente?
	 • ¿Se repite algún tipo de operación o salto?
	 • ¿Podría expresarse el patrón con una fórmula o con instrucciones?

¿Sabías qué…?

El sistema de las redes sociales ana-
liza patrones de comportamiento de
millones de usuarios simultáneamen-
te. Sí el 80% de las personas que vie-
ron el video A también interactuaron
con el video B, hay un patrón. Así
que cuando una canción se vuelve
viral en plataformas como TikTok o
un video es tendencia en YouTube,
no es casualidad. El corazón de estas
plataformas es un algoritmo de reco-
nocimiento de patrones que predice
tus próximos deseos.

19PENSAMIENTO COMPUTACIONAL

Progresión 1

Reconocimiento de patrones:
×2, suma de los dos anteriores y aumento progresivo de posiciones en el alfabeto.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza la Tabla de reconocimien-
to de patrones:

1. Retoma el problema de Piso gamer del salón de baile.

2. Con base en la tabla de descomposición del problema, enfócate en encontrar
patrones básate en las siguientes preguntas:

	 a. ¿Hay simetría?
	 b. ¿Las diagonales siguen un mismo patrón?
	 c. ¿El diseño se repite igual si giras el cuadrado?

3. Encuentra los patrones que tiene el diseño del piso, por ejemplo puedes dividir
el piso en cuatro partes o comparar lo que observas en cada una.

4. Inserta en el archivo una tabla con las siguientes columnas y rellénala con la
información que observes en los patrones:

	 a. Partes comparadas
	 b. Similitudes
	 c. Diferencias
	 d. Posible patrón

5. Guarda el archivo usando en el nombre tus iniciales seguidas de _PC_P1_E03 y
compártela con tu profesor para que la evalúe.

20 PENSAMIENTO COMPUTACIONAL

Progresión 1

Abstracción

La Abstracción es el proceso de seleccionar y preservar sólo la información rele-
vante de un problema y omitir los detalles que no afectan la solución, es el arte
de la simplificación, filtrar la realidad para quedarse con lo esencial. Esta selección
permite modelar el problema a un nivel manejable y útil para diseñar un algoritmo
o sistema. Además, un buen modelo abstracto facilita el análisis y generalización a
problemas similares, reduciendo la complejidad y guiando la implementación. Por
el contrario, una abstracción pobre lleva a soluciones rígidas y erróneas.

La abstracción ha sido clave en la evolución del pensamiento computacional y sus
aplicaciones. Es el puente entre el mundo real y su representación computacional.

Proceso práctico de la fase de abstracción es:

1. Definir el objetivo: tener claro lo que se quiere resolver.

2. Listar los detalles del mundo real: recopilar toda la información disponible.

3. Preguntarse por la relevancia: determinar la información esencial requerida
para la solución, puede ser preguntándose ¿esta información influye en la solución?
Omitir el ruido o los detalles que no afectan el resultado final.

4. Elegir representaciones: crear un modelo simplificado del problema, esto pue-
de ser en una lista, matriz, grafo, conjunto de atributos, etc.

5. Formalizar operaciones: definir qué acciones, consultas o herramientas se ne-
cesitan sobre la representación.

6. Probar la abstracción: aplicar la representación a ejemplos concretos; verificar
si permite resolver el objetivo.

7. Iterar: ajustar la abstracción, es decir, añadir o quitar atributos, según pruebas
y errores.

Ejemplo de la fase de abstracción

Diseñar una plataforma que detecte automáticamente publicaciones que anuncian
eventos escolares como talleres, torneos, conferencias, para agruparlas en un ca-
lendario.

Objetivo:
Crear un modelo que identifique si una publicación es anuncio de evento o no lo es.

Paso 1.
Definir el objetivo: clasificar cada publicación como “evento” o “no evento” con
precisión razonable.

Paso 2.
Listar detalles: texto completo de la publicación (oraciones, emojis, hashtags), au-
tor (perfil), fecha de publicación, imágenes adjuntas, enlaces externos, comenta-
rios y reacciones.

Relaciónalo con...

Un error común que los estudiantes
cometen al realizar la fase de abs-
tracción es confundir representación
con algoritmos, pero, elegir una
buena abstracción no es lo mismo
que implementar el algoritmo, am-
bas etapas deben aparecer por se-
parado.

21PENSAMIENTO COMPUTACIONAL

Progresión 1

Conceptos clave

NPL. Procesamiento de Lenguaje
Natural (Natural Language Proces-
sing) es una rama de la IA que va
más allá de la búsqueda de palabras
clave, permite que una computadora
comprenda el significado, la inten-
ción o el tono de los textos.

Relaciónalo con...

Un árbol de decisión es una estruc-
tura de tipo diagrama que organiza
decisiones en ramas a partir de pre-
guntas o condiciones. Cada nodo
representa una pregunta, cada rama
una respuesta posible (Si/No) y las
hojas finales simbolizan una deci-
sión o resultado. Modelar un árbol
facilita ignorar detalles innecesarios,
además se identifican las característi-
cas clave al transformar información
compleja en una estructura visual.

Paso 3.
Decidir relevancia:

• Conservar (probablemente sean relevantes) presencia de palabras clave como
“taller”, “conferencia”, “inscripciones”, “fecha”, “hora”, “sede”; formato con fe-
cha/hora, hashtags relacionados, enlaces a formularios de inscripción.

• Omitir en primera versión, las imágenes (porque requieren visión por compu-
tadora), tono emotivo (a menos que se use NLP avanzado), gran cantidad de co-
mentarios (ruido).

• Consideración adicional: autor verificado puede aumentar probabilidad (atributo
opcional).

Paso 4.
Elegir representación: representamos cada publicación como un vector de caracte-
rísticas binarias: 1= Evento, 0 = No evento

• f1: contiene palabra “taller” (0/1)
• f2: contiene palabra “inscripción” (0/1)
• f3: contiene una fecha (0/1)
• f4: contiene hora (0/1)
• f5: contiene hashtag relacionado (0/1)
• f6: longitud de texto (número)

Este vector es una abstracción: de texto largo y pocos atributos relevantes.

Paso 6.
Probar la abstracción con los siguientes 3 ejemplos:

1. “¡Inscripciones abiertas para el taller de robótica este viernes a las 10:00! Regís-
trate aquí: …”
2. “Miren este meme sobre los exámenes ”
3. “Concurso de fotografía — más detalles mañana”
Se detecta un falso negativo en ejemplo 3, la abstracción es rígida porque depen-
de de palabras clave y de la presencia explícita de fecha/hora.

Paso 7.
Iterar y mejorar la abstracción:

• Añadir f7: contiene palabra “concurso” mejora la detección.
• Añadir detección de frases temporales: “mañana” y “este sábado” como f8.
• Considerar una puntuación y un umbral para clasificar.
• Probar con más ejemplos y ajustar.

Paso 5.
Formalizar operaciones:
• Clasificar como evento mediante
un árbol, usando los vectores rele-
vantes etiquetados.

22 PENSAMIENTO COMPUTACIONAL

Progresión 1

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza la Tabla de abstracción:

1. Retoma el archivo con las preguntas de identificación y las tablas de descompo-
sición y descubrimiento de patrones que has trabajado las tres actividades anterio-
res con el problema Piso gamer del salón de baile.

2. Revisa las respuestas que tienes en el archivo y reflexiona:

a. ¿Qué partes del problema son realmente necesarias para explicar el diseño?
b. ¿Qué detalles podrías eliminar sin afectar su comprensión?
c. ¿Qué ideas o patrones se repiten y pueden generalizarse?

3. Inserta una tabla más en el mismo archivo, después de la tabla de descubrimien-
to de patrones, con las siguientes columnas:

a. Elemento del diseño o dato del problema.
b. ¿Es esencial?
c. Razón.
d Cómo puede representarse de forma simple.

4. Con base en las respuestas de la tabla elabora una representación gráfica en tu
cuaderno de notas del diseño que conserve solo los elementos esenciales.

5. Escanea o toma foto con tu celular del esquema visual e insértalo debajo de la
tabla de abstracción.

6. Guarda el archivo usando en el nombre tus iniciales seguidas de _PC_P1_E04 y
hazla llegar a tu profesor para recibir evaluación.

Diseño de algoritmo

Una vez que se ha analizado, descompuesto y abstraído el problema, el paso final
antes de la implementación es crear la secuencia precisa y ordenada de instruccio-
nes, es decir, el algoritmo.

Los algoritmos son la base de la programación de computadoras, son escritos en
código especial entendible por los programas de computadora llamado lenguaje
algorítmico. Este implementa una solución teórica a un problema indicando las
operaciones a realizar y el orden en que deben ejecutarse.

Diseñar el algoritmo es traducir la solución abstracta en una secuencia de pa-
sos claros, que puede ser en pseudocódigo, diagrama de flujo o instrucciones en
lenguaje natural, que lleven a la resolución del problema. Su importancia es que
traduce la comprensión abstracta del problema en un procedimiento ejecutable.

Algunas buenas prácticas en el diseño algorítmico son:

¿Sabías qué…?

No todos los algoritmos son iguales.
Para un mismo problema, por ejem-
plo, ordenar una lista de números,
pueden existir decenas de algorit-
mos. La clave es encontrar el algo-
ritmo óptimo, la cual se mide por la
eficiencia, que se divide en dos ele-
mentos: tiempo de ejecución y uso
de memoria. Aspectos evaluados en
concursos como la Olimpiada Mexi-
cana de Informática.

23PENSAMIENTO COMPUTACIONAL

Progresión 1

Claridad con pasos ordenados y sin ambigüedades.

Modularidad dividir en funciones y/o subalgoritmos.

Condiciones y
bucles especificar cuándo repetir o tomar decisiones.

Entradas y
salidas

definir claramente qué datos entran y
qué resultados se esperan.

Casos límite contemplar situaciones extremas, como
datos faltantes o errores.

Ejemplo de diseño de algoritmo

Encender una lámpara solo si el interruptor está encendido.

Entrada:
• Estado del interruptor: puede ser ON o OFF.

Proceso:
• Verificar el estado del interruptor.
• Si está ON, enviar corriente a la lámpara.
• Si esta OFF, mantener la lámpara apagada.

Salida:
• Estado de la lámpara, luz encendida o luz apagada.

Diseño del algoritmo:

Opción 1 con Pasos secuenciales en lenguaje natural:
1. Iniciar el estado del interruptor.
2. Leer el estado del interruptor.
3. Si el interruptor está en ON, encender la lámpara.
4. Si el interruptor está en OFF, dejar la lámpara apagada.
5. Termina el proceso.

Opción 2 con diagrama de flujo:

Relaciónalo con...

La fase de diseño es la parte del pro-
ceso que menos depende de una
computadora. Los grandes diseña-
dores de algoritmos a menudo tra-
bajan con lápiz y papel o una pizarra.

24 PENSAMIENTO COMPUTACIONAL

Progresión 1

Opción 3 con pseudocódigo (en graphql):

	 Inicio
	 Leer interruptor
	 Si interruptor == ON entonces
		 Encender lámpara
	 Sino
		 Mantener lámpara apagada
	 Fin Si
	 Fin

Explicación paso a paso:
1. Inicio (se enciende o ejecuta el sistema).
2. Leer interruptor (el programa obtiene el valor actual del interruptor) 1= ON,
0=OFF).
3. Condición (el sistema evalúa si el interruptor está en ON).
4. Encender lámpara (si la condición se cumple, el programa activa la salida digital
que alimenta la lámpara).
5. Sino (sino se cumple, la lámpara permanecerá apagada).
6. Fin (el programa concluye, sin repetir la secuencia).

Ejercitando mis conocimientos --
Después de analizar el diseño del piso y descubrir sus patrones y estructura, es
momento de convertir tus ideas en un algoritmo, es decir, una secuencia ordenada
de pasos que cualquier persona pueda seguir para obtener el resultado correcto.

De manera individual y con la ayuda de tu profesor realiza un Diseño de algoritmo
con las siguientes indicaciones:

1. Retoma el archivo generado la actividad anterior, el cual cuenta con la siguiente
información:
	 a. Preguntas de identificación
	 b. Tabla de descomposición del problema
	 c. Tabla de reconocimiento de patrones
	 d. Tabla de abstracción del problema

2. Con base en toda la información redacta en el archivo un algoritmo que resuelva
de manare eficiente el problema. Este debe cumplir con las características funda-
mentales de los algoritmos y atender las etapas de:
	 a. Entrada de información
	 b. Proceso de datos
	 c. Salida de resultados

3. Una vez terminado guarda el archivo nombrándolo con tus iniciales seguidas
de _PC_P1_E05 y compártelo con tu profesor.

Conceptos clave

Lenguaje de programación estruc-
turada. Es un tipo de lenguaje que
organiza el código en una estructura
lógica y modular, usando estructuras
que controlan el flujo de la secuencia
evitando saltos desordenados.

25PENSAMIENTO COMPUTACIONAL

Progresión 1

Implementación

La implementación es la traducción del algoritmo diseñado a un lenguaje que
pueda ser ejecutado por una máquina. Significa pasar del algoritmo a una forma
ejecutable, programarlo en un lenguaje o simular con herramientas visuales que
permiten la automatización de la solución. Esta fase es el punto donde la solución
teórica se convierte en un programa funcional.

A los usuarios que se inician en el campo de la algoritmia se les recomienda para
ver sus algoritmos en acción emplear lenguajes de programación y entornos visua-
les de desarrollo sencillos como Scratch, PSeInt, Code.org, ya que ayudan a intro-
ducir conceptos sin la sintaxis propia de un lenguaje de programación estructurada
como se requiere en C, C++, Python, Java y Pascal, entre muchos más.

Ejemplo de implementación de algoritmo

Un estudiante necesita saber si aprueba o reprueba una materia en función de su
calificación final.

Entrada:
• Calificación (número del 0 al 10).

Proceso:
• Leer la calificación del estudiante.
• Evaluar si es mayor o igual a 6.
• Mostrar el resultado según corresponda.

Salida:
• Mensaje indicando si el estudiante aprueba o reprueba.

Algoritmo:
1. Iniciar el proceso.
2. Leer la calificación del estudiante.
3. Si la calificación es mayor o igual a 6, mostrar “Aprobado”.
4. Si la calificación es menor que 6. Mostrar “Reprobado”.
5. Terminar el proceso.

Pseudocódigo en PSeInt

	 Algoritmo Evaluar_calificación
	 Definir calificación Como Real
	
	 Escribir “Introduce tu calificación (0-10): ”
	 Leer calificación

	 Si calificación ≥ 6 Entonces
		 Escribir “El estudiante está Aprobado. ”
	 SiNo
		 Escribir “El estudiante está Reprobado. ”
	 FinSi

	 FinAlgoritmo

¿Sabías qué…?

Aunque el lenguaje de programa-
ción Pascal es menos utilizado en
proyectos modernos, es histórica-
mente importante ya que fue dise-
ñado para enseñar los principios de
este tipo de programación.

Relaciónalo con...

Es conveniente que en el diseño de
algoritmo y diagramas de flujo, se
acostumbre a escribir las variables y
constantes con formato de cursivas
para identificarlas fácilmente.

1
2
3
4
5
6
7
8
9
10
11
12
13

26 PENSAMIENTO COMPUTACIONAL

Progresión 1

Evaluación

Esta última fase del pensamiento computacional, pero no menos importante, es la
validación y mejora continua, aquí:

Se prueba  Se corrige  Se mejora

Evaluar significa medir si la solución cumple las metas definidas en la fase Identifi-
cación del problema. Involucra pruebas, análisis de eficiencia, de robustez frente a
entradas no esperadas y de reflexión crítica sobre la solución y su impacto. Es decir
que revela en el código del programa los errores de especificación o decisiones
prácticas, de ahí que el resultado de la evaluación sirve de retroalimentación a la
fase de implementación.

La evaluación implica principalmente tres acciones:

1. Pruebas. Esto es ejecutar el programa con diferentes datos de entrada, inclu-
yendo casos limite, para verificar que se cumple con el objetivo.

2. Depuración o Debugging. Es el proceso de identificar, analizar y corregir en el
código los errores, que a su vez se llaman bugs.

3. Refinamiento. Analizar la eficiencia y claridad de la solución. Aquí conviene ha-
cerse preguntas como ¿funciona bien? ¿podría ser más rápido o consumir menos
recursos?

Durante la realización de las pruebas se lleva a cabo la iteración, esto es, ejecutar
un bloque de código una y otra vez. La repetición puede terminar una vez que
se cumple una condición específica, por ejemplo un bucle while o cuando se ha
ejecutado un número de veces definido, como un bucle for. Esta actividad es parte
central del pensamiento computacional.

Es muy importante llevar a cabo la evaluación, pues asegura la fiabilidad y eficien-
cia del algoritmo, incluso las pruebas de escritorio son muy asertivas. Las pruebas
simulan el comportamiento de un algoritmo, que se apoyan en una tabla con tan-
tas columnas como variables tenga el algoritmo y seguir las instrucciones colocan-
do los valores correspondientes.

Ejemplo de implementación de algoritmo

Comprobar que:
1. El algoritmo recibe correctamente la entrada (calificacion).
2. La condición lógica (>=6) se evalúa adecuadamente.
3. La salida corresponde al resultado esperado (Aprobado o Reprobado).
4. No hay errores lógicos ni omisión de casos límite.

Conceptos clave

Bugs. Es un error, fallo o defecto de
sintaxis o de lógica dentro del código.

Bucle while. Es una estructura de
control de flujo en programación
que ejecuta repetidamente un blo-
que de código mientras una condi-
ción especificada es verdadera, se
evalúa la condición antes de cada
iteración y si es falsa, se termina el
ciclo.

Bucle for. Estructura de control que
se utiliza para ejecutar un bloque
de código un número determinado
de veces. Se usa comúnmente para
iterar sobre colecciones de datos
como listas o arreglos.

27PENSAMIENTO COMPUTACIONAL

Progresión 1

Corrida de escritorio:

Caso Entrada:
calificación

Condición
calificación

≥ 6

Resultado
esperado

Salida
generada por
el algoritmo

Conclusión

1 9.5 Verdadero Aprobado El estudiante
está aprobado Correcto

2 6 Verdadero Aprobado El estudiante
está aprobado Correcto

3 5.9 Falso Reprobado El estudiante
está reprobado Correcto

4 0 Falso Reprobado El estudiante
está reprobado Correcto

5 10 Verdadero Aprobado El estudiante
está aprobado Correcto

Análisis de resultados:

• El algoritmo responde correctamente en todos los casos de prueba.
• Se evaluaron casos límite: 6 y 5.9, donde el comportamiento lógico fue el esperado.
• No hay errores en la estructura condicional ni en la salida de texto.
• Se cumple el objetivo: determinar si el estudiante aprueba o reprueba según su
calificación.

El algoritmo cumple con la lógica del problema, produce resultados correctos en
todos los escenarios de prueba, no requiere ajustes adicionales, por tanto, está
listo para implementarse en un lenguaje de programación o entorno visual.

Ejercitando mis conocimientos --
Realiza la actividad de Implementación y evaluación.

1. Retoma el archivo de la actividad anterior del algoritmo del problema del piso
gamer salón de baile y comprueba el funcionamiento con una simulación de escri-
torio ejecutando el algoritmo paso a paso.

2. Realiza la implementación de tu algoritmo utilizando los datos de casos de prue-
ba de la siguiente tabla:

Caso Valor de N Total de piezas Piezas grises Piezas blancas

1 23

2 17

3 9

4 27

Para saber más…

Accede al video Fases del pensa-
miento computacional, donde se ex-
plica la aplicación de cada una de las
etapas con un problema específico.
Accede a él escaneando el Código
QR.

28 PENSAMIENTO COMPUTACIONAL

Progresión 1

3. Llena la tabla con los valores obtenidos después de probar tu algoritmo con los
valores de N de la tabla.

4. Pide a tu profesor que muestre en pizarrón su corrida y compara con tus resul-
tados.

5. Una vez terminada la verificación, guarda el archivo usando en el nombre tus
iniciales seguidas de _PC_P1_E06 y compartelo con tu profesor.

Concretando mis conocimientos
Es momento de demostrar tu aprendizaje de las Fases del pensamiento computa-
cional, para ellos de manera individual realiza la actividad y aplicar cada una de las
etapas:

El propietario del Pixel Market, una tienda de videojuegos retro quiere digitalizar su
sistema de caja.

Demuestra que eres un excelente programador y ayúdale a diseñar un algoritmo
secuencial que le permita descomponer cualquier cantidad de dinero en monedas
de distintas denominaciones: 500, 200, 100, 50, 25, 10, 5 y 1 pesos.

1. Crea un documento en Word para colocar el texto del problema y las tablas nece-
sarias para aplicar las fases antes mencionadas.

	 a. Aplica la fase de identificación y descomposición del problema.
	 b. Observa que sucede y reconoce los patrones del problema.
	 c. Realiza la abstracción, conservado únicamente lo esencial del problema.
	 d. Diseña el algoritmo adecuado para resolver el reto.
	 e. Implementa y evalúa los resultados con la siguiente tabla de ejemplos:

Caso Cantidad Total Respuesta

1 385

hay 0 moneda(s) de 500
hay 1 moneda(s) de 200
hay 1 moneda(s) de 100
hay 1 moneda(s) de 50
hay 1 moneda(s) de 25
hay 1 moneda(s) de 10
hay 0 moneda(s) de 5
hay 0 moneda(s) de 1

2 987

29PENSAMIENTO COMPUTACIONAL

Progresión 1

Caso Cantidad Total Respuesta

3 372

4 624

5 1568

2. Llena la tabla anterior con los resultados de las pruebas de cada caso.

3. Una vez probado el algoritmo, guarda el documento usando en el nombre tus
iniciales seguidas de _PC_P1_CMC. Hazlo llegar a tu profesor por el medio que
acuerden para recibir evaluación.

Instrumento de evaluación
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluará tu reporte escrito.

Indicador Si No Puntos

Identificar las necesidades, restricciones y objetivos
que debe cumplir el reto

1

Aplica la fase de descomposición 1

Reconoce los patrones del problema 3

Realiza la abstracción, conservado únicamente lo
esencial del problema.

2

Diseña el algoritmo adecuado para resolver el reto 2

Implementa y evalúa los resultados con una corrida
de escritorio según los valores de la tabla

1

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en la Progresión 1, realiza la
actividad interactiva, ingresa a ella
escaneando el código QR.

30 PENSAMIENTO COMPUTACIONAL

Resuelve problemas cotidianos y académicos mediante la construcción de algoritmos en IDE, utilizando estructuras
de control decisivas e iterativas para automatizar procesos y validar la solución de manera digital.

Tiempo estimado: 12 horas

Tus metas serán:
• Identificar situaciones de la vida cotidiana que pueden resolverse de manera más eficiente utilizando secuencias
 y ciclos.

• Comprobar la lógica y funcionamiento de algoritmos para representar sus soluciones mediante IDE corrigiendo
 errores y optimizando el código.

Algoritmia
en IDEPr

og
re

si
ón

2

Recuperando lo que sabemos

Este cuestionario es de recuperación de conocimientos previos, es útil para identificar tus saberes y habilidades y cómo
los relacionas con la realidad, además te ayudará a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar cómo entiendes o aplicarías cada situación, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. ¿Qué entiendes por algoritmo y qué papel crees que desempeña en la resolución de problemas dentro de la programación?

2. ¿Has utilizado antes algún programa o aplicación para escribir y ejecutar instrucciones o códigos? Si es así, ¿cuál fue tu
experiencia?

3. ¿Qué consideras que es un Entorno de Desarrollo Integrado (IDE) y cuál podría ser su función en la programación?

4. ¿Qué significa que un lenguaje de programación o pseudolenguaje tenga una sintaxis definida? ¿Por qué crees que es
necesario respetarla?

31PENSAMIENTO COMPUTACIONAL

Progresión 2

Reactivando mis conocimientos

Cada vez que organizas tu tiempo, divides una tarea en pasos o buscas la forma más rápida para lograr un objetivo, estás
aplicando lógica, secuencia y análisis de problemas, los mismos principios que se utilizan al crear un algoritmo.

Imagina este escenario:

Después de la escuela, usas tu celular y te das cuenta de que tienes demasiadas notificaciones: mensajes, correos, avisos de
redes y recordatorios. Tu objetivo es ordenar tus notificaciones para atender primero las más importantes (por ejemplo, una
tarea, un mensaje urgente o una alerta del calendario). Para lograrlo, necesitas pensar en un procedimiento paso a paso que
te ayude a decidir qué notificaciones revisar primero y cuáles después.

1. En tu cuaderno o documento digital, escribe los pasos que seguirías para organizar tus notificaciones de manera lógica
y eficiente.

2. Identifica los elementos del problema:

	 • Datos de entrada: ¿Qué información recibes? (mensajes, horarios, alertas, etc.)
	 • Proceso: ¿Qué acciones o reglas aplicas para decidir el orden de atención?
	 • Salida: ¿Cuál es el resultado final o estado ideal de tu pantalla?

3. Reflexiona y responde en tus notas:

	 • ¿Qué parte de tu procedimiento crees que un programa podría automatizar?
	 • ¿Cómo te ayudaría usar un entorno de desarrollo para simular tu algoritmo antes de programarlo?
	 • ¿Qué ventajas tendría poder observar cómo se ejecutan tus pasos uno por uno en una simulación?

Comparte en clase tus pasos y reflexiones con tus compañeros y el profesor. Analicen juntos cuál de los procedimientos fue
más claro, ordenado y eficiente, y comenten cómo ese mismo proceso podría transformarse en un algoritmo computacional.

32 PENSAMIENTO COMPUTACIONAL

Progresión 2

PSeint

Recurso digital

Escanea el código QR para descar-
gar el archivo instalador de PSeInt.

El desarrollo del pensamiento computacional requiere comprender cómo las ideas
abstractas se transforman en soluciones concretas mediante algoritmos. En este
proceso, los Entornos de Desarrollo Integrado (IDE, por sus siglas en inglés) des-
empeñan un papel esencial, ya que permiten diseñar, escribir, ejecutar y depurar
programas dentro de una misma interfaz. El uso de un IDE favorece la práctica de
la algoritmia al proporcionar herramientas que ayudan al programador a concen-
trarse en la lógica de solución más que en los aspectos técnicos del lenguaje.

Históricamente, los primeros entornos de programación consistían únicamente en
editores de texto y compiladores separados. Con el avance de la ingeniería de
software, surgió la necesidad de integrar todos los recursos en una sola plataforma.
Así nacieron los IDE, que incorporan componentes como un editor de código, un
compilador o intérprete, un depurador y, en algunos casos, simuladores o asis-
tentes visuales. Esta evolución no solo mejoró la productividad del programador,
sino que también simplificó el proceso de aprendizaje para quienes se inician en
la programación.

En el contexto educativo, PSeInt (Intérprete de Pseudocódigo) representa una he-
rramienta didáctica ideal para comprender los fundamentos de la algoritmia. Su
diseño se orienta a facilitar la construcción de algoritmos utilizando un pseudo-
lenguaje cercano al español, lo que reduce la complejidad sintáctica y permite
enfocarse en la lógica del problema. PSeInt simula el funcionamiento de un len-
guaje estructurado, favoreciendo la comprensión del flujo lógico y del proceso de
ejecución de un programa.

Interfaz

La interfaz de PSeInt está diseñada para facilitar el trabajo con algoritmos, en ella
se distinguen los siguientes elementos principales.

Interfaz de PSeint

2.1 Aplicación en entorno de desarrollo integrado

33PENSAMIENTO COMPUTACIONAL

Progresión 2

		 Botón de
		 función ejecutar
		 paso a paso

Panel de ejecución paso a paso

Para saber más...

Escanea el código QR y observa el
video Interfaz de PSeInt.

u Panel de Variables: muestra las variables identificadas, organizadas por proce-
so y subprocesos. El ícono representa el tipo de dato.

u Panel de Operadores y Funciones: presenta un catálogo con las funciones y
constantes predefinidas y la lista de posibles operadores, organizado por catego-
rías. Al hacer clic sobre uno de ellos se inserta en el pseudocódigo.

u Panel de Comandos: permite introducir acciones o estructuras de control me-
diante un clic. Introduce el código del proceso seleccionado, marcando con re-
cuadros las partes que se deben completar (expresiones, acciones, valores, etc.).

u Panel de Ayuda Rápida: brinda detalles y sugerencias para corregir los errores
que el intérprete encuentre en el algoritmo, se despliega automáticamente en la
parte inferior de la ventana cada vez que se introduce un comando mediante el
Panel de Comandos o cada vez que se hace clic sobre un mensaje de error.

u Panel de Ejecución Paso a Paso: permite controlar de forma detallada la eje-
cución del algoritmo o configurar la prueba de escritorio, si no se encuentra visi-
ble se puede ejecutar al pulsar el comando ubicado en el margen derecho de la
ventana o desde la barra de accesos rápidos. La prueba de escritorio consiste en
realizar un seguimiento detallado de los valores que van tomando las variables en
cada paso, PSeInt construye una tabla automáticamente mostrando las variables o
expresiones seleccionadas.

Prueba de escritorio

Estudiando --
Dedica un tiempo a la lectura de las páginas correspondientes al tema Compo-
nentes del pseudolenguaje. Realizar esta tarea te facilitará las actividades que el
profesor guiará en las siguientes sesiones.

Componentes del pseudolenguaje

Todo algoritmo en pseudocódigo tiene la siguiente estructura general:

Algoritmo Titulo
 acción 1;
 acción 2;
 .
 .
 acción n;
FinAlgoritmo

Comienza con la palabra clave Algoritmo, se-
guida del nombre del programa, luego le si-
gue una secuencia de instrucciones y finaliza
con la palabra FinAlgoritmo. Una secuencia de
instrucciones es una lista de una o más instruc-
ciones y/o estructuras de control.

34 PENSAMIENTO COMPUTACIONAL

Progresión 2

Conceptos clave

Palabras reservadas. Son términos
con un significado específico en
PSeInt, como Algoritmo, Como, Leer
o Escribir. Forman parte del lengua-
je del algoritmo y no pueden usarse
como nombres de variables.

¿Sabías qué…?

En PSeInt existen constantes predefi-
nidas como PI y E (número de Euler),
que representan valores matemáti-
cos universales. Estas pueden usarse
directamente en los algoritmos sin
necesidad de declararlas, facilitando
cálculos con mayor precisión.

Constante

u Variables

Una variable representa un espacio de memoria destinado a almacenar informa-
ción temporal durante la ejecución de un programa. Por ejemplo, si se desea cal-
cular el área de un triángulo, es necesario guardar los valores de la base y la altura
en variables, para luego realizar la operación correspondiente y almacenar el re-
sultado en otra. El valor contenido en una variable puede modificarse conforme
avanza la ejecución del programa, lo que le otorga su carácter dinámico. En pocas
palabras, una variable es un contenedor que permite guardar y manipular datos.

Cada variable se identifica mediante un nombre o identificador, el cual debe
seguir ciertas reglas para evitar ambigüedades. Un identificador válido inicia con
una letra y puede incluir letras, números o guiones bajos, pero no admite espa-
cios, operadores ni coincidencias con palabras reservadas del lenguaje. Algunos
ejemplos podrían ser: A, Lado1, Total, Nombre_Apellido o DireccionCorreo. En la
mayoría de los lenguajes de programación, los nombres de variables no pueden
contener caracteres especiales (acentos, diéresis, letra “ñ”).

En PSeInt, toda variable está asociada a un tipo de dato, lo que implica que solo
puede almacenar valores del mismo tipo durante la ejecución. Por ejemplo, una
variable declarada para guardar números no puede utilizarse posteriormente para
almacenar texto.

u Constantes

Una constante es un espacio de memoria cuyo valor permanece invariable duran-
te toda la ejecución del algoritmo. A diferencia de las variables, las constantes se
utilizan para representar datos fijos, como valores matemáticos o parámetros que
no deben modificarse, garantizando así la estabilidad y legibilidad del programa.

El uso de constantes evita errores por cambios accidentales en datos esenciales y
mejora la comprensión del algoritmo, ya que permite identificar fácilmente valores
que poseen un significado específico dentro del programa.

u Tipos de datos

Los tipos de datos determinan la clase de información que una variable puede
almacenar y las operaciones que se pueden realizar con ella. En PSeInt los tipos
básicos son entero, real, carácter y lógico.

Tipo Descripción Ejemplos de Valor

Entero Representa números sin decimales. Se utiliza para contar o realizar operaciones aritméti-
cas exactas.

15, -10, 0

Real Almacena números con parte decimal. Permite realizar cálculos con precisión fraccionaria. 8.75, -2.5, 0.33

Carácter Contiene un carácter o cadenas de caracteres encerrados entre comillas. Es útil para
manejar datos de texto individuales, palabras o mensajes.

“A”, “5”, “?”, “Carlos”

Lógico Representa valores de verdad, empleados en condiciones o decisiones del algoritmo. Verdadero, Falso

Dias_semana ß 7

35PENSAMIENTO COMPUTACIONAL

Progresión 2

Para saber más…

PSeInt ofrece funciones predefini-
das que permiten realizar cálculos,
manejar texto o generar números
aleatorios con solo una instrucción.

Escanea el QR para acceder a un
documento con las funciones pre-
definidas más comunes.

u Operadores

En un algoritmo, los operadores son símbolos que permiten realizar operaciones
entre valores o variables. Constituyen elementos esenciales del lenguaje, ya que
posibilitan el procesamiento de datos y la toma de decisiones dentro del pro-
grama. En PSeInt, los operadores se agrupan según la función que desempeñan:
aritmética, relacional y lógica.

Los operadores aritméticos se utilizan para efectuar cálculos numéricos con varia-
bles de tipo entero o real. Permiten realizar operaciones básicas como suma, resta,
multiplicación, división o cálculo del residuo de una división y se emplean dentro
de condiciones y estructuras de control.

Los operadores relacionales comparan dos valores y devuelven un resultado lógi-
co: Verdadero o Falso. Son indispensables en estructuras condicionales, donde el
flujo del algoritmo depende del cumplimiento de una condición.

Los operadores lógicos se utilizan para combinar o modificar expresiones relacio-
nales. Permiten evaluar condiciones complejas y controlar la lógica del programa,
resultan esenciales para la toma de decisiones y la repetición controlada de proce-
sos dentro de un algoritmo.

Operadores
Aritméticos Función Ejemplo Resultado

+ Suma 5 + 3 8

- Resta 10 - 4 6

* Multiplicación 2 * 3 6

/ División 9 / 3 3

% o MOD Módulo (residuo) 10 % 3 1

Operadores
Relacionales Función Ejemplo Resultado

= Igual a A = B Verdadero si A y B son iguales

<> Distinto que A <> B Verdadero si A y B son diferentes

< Menor que A < B Verdadero si A es menor que B

> Mayor que A > B Verdadero si A es mayor que B

<= Menor o igual que A <= B Verdadero si A es menor o igual que B

>= Mayor o igual que A >= B Verdadero si A es mayor o igual que B

Operadores

Lógicos Función Ejemplo Resultado

& o Y Conjunción lógica (AND) (A > 0) & (B < 10) Verdadero si ambas condiciones se cumplen

| u O Disyunción lógica (OR) (A = 5) | (B = 7) Verdadero si al menos una condición se cumple

~ o NO Negación lógica (NOT) ~ (A = 5) Verdadero si A no es igual a 5

36 PENSAMIENTO COMPUTACIONAL

Progresión 2

¿Sabías qué…?

En PSeInt existen acciones secuen-
ciales especiales. Por ejemplo, Lim-
piar Pantalla, Esperar Tecla, que
detiene el algoritmo hasta presionar
una tecla y Esperar, que pausa la
ejecución durante un tiempo espe-
cífico.

Recurso digital

Escanea el código QR, descarga el
documento y sigue las instrucciones
de la actividad con la guía de tu pro-
fesor.

El dominio de los operadores en PSeInt permite traducir razonamientos matemáti-
cos y lógicos en instrucciones comprensibles para el intérprete. Su uso adecuado
garantiza la correcta evaluación de expresiones, la manipulación precisa de datos y
la ejecución coherente de algoritmos dentro del entorno de desarrollo.

u Acciones primitivas secuenciales

Las acciones primitivas secuenciales representan las instrucciones más básicas y
directas que un algoritmo puede ejecutar en PSeInt. Se denominan primitivas por-
que constituyen operaciones elementales, que no se pueden descomponer en pa-
sos más simples dentro del pseudolenguaje. A su vez, se consideran secuenciales
porque cada instrucción se ejecuta únicamente después de que la anterior haya
finalizado, garantizando una secuencia ordenada y predecible.

Entre las principales acciones primitivas secuenciales en PSeInt se encuentran:

Estas acciones son fundamentales para crear programas sencillos y entender cómo
se ejecutan paso a paso los algoritmos. Gracias a ellas, es posible ingresar datos,
procesarlos y mostrar resultados sin utilizar condiciones ni repeticiones. Dominar
las acciones primitivas secuenciales ayuda a comprender la lógica de la progra-
mación estructurada, ya que permite reforzar los conceptos de entrada, proceso y
salida, base del pensamiento algorítmico.

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje realiza de manera individual y con la guía de tu profe-
sor la siguiente actividad:

1. Descarga el archivo de MS Word escaneando el código QR de esta página.

2. Aplica las fases del pensamiento computacional y utiliza el IDE PSeInt para dise-
ñar, implementar y evaluar el algoritmo que resuelva el problema planteado en el
documento que descargaste.

3. Una vez realizado el algoritmo en PSeInt activa la ejecución paso a paso y haz
un seguimiento del proceso capturando la información o valores correspondientes
en cada celda de la tabla de ejecución paso a paso en el archivo de MS Word que
descargaste.

4. Guarda el algoritmo en PSeInt y el documento utilizando en el nombre de am-
bos archivos tus iniciales seguidas de _PC_P2_E01.

5. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

Acción Descripción Ejemplo

Definir Declara una variable indicando su tipo de dato Definir edad Como Entero

Asignar Establece el valor de una variable edad f16

Leer Permite ingresar información desde el teclado y almacenarla en una variable Leer edad

Escribir Muestra en pantalla mensajes o resultados almacenados en variables Escribir “Tu edad es: “, edad

37PENSAMIENTO COMPUTACIONAL

Progresión 2

Una estructura de control es un mecanismo que posibilita alterar el orden natural
de ejecución de las instrucciones dentro de un programa en el ámbito de la pro-
gramación.

Las instrucciones por defecto se ejecutan de manera secuencial, es decir, una tras
otra. Sin embargo, en la mayoría de los algoritmos es necesario tomar decisiones,
como cuando se ejecuta un bloque de código únicamente si se cumple una condi-
ción, o bien realizar tareas repetitivas, como calcular promedios de varios valores
o recorrer una lista.

Por esta razón, se utilizan tres tipos fundamentales de estructuras de control:

1. Secuenciales, donde las instrucciones se ejecutan en orden lineal.

2. Condicionales, donde el flujo depende de una o varias condiciones lógicas.

3. Repetitivas, donde un conjunto de instrucciones se ejecuta varias veces.

Además de facilitar la toma de decisiones y la repetición de tareas, las estructuras
de control permiten escribir programas más eficientes, legibles y fáciles de man-
tener. Gracias a ellas, los desarrolladores pueden dividir problemas complejos en
bloques lógicos más simples, lo que mejora la organización del código y reduce la
posibilidad de errores.

En entornos educativos como PSeInt, estas estructuras son fundamentales para
que los estudiantes comprendan cómo fluye la lógica en un algoritmo y cómo se
puede controlar ese flujo para resolver problemas de manera efectiva.

Estructura secuencial
Este tipo de estructura es la más simple y también la más fácil de aplicar. En ella, las
instrucciones se ejecutan una detrás de otra, sin saltos ni repeticiones, siguiendo
únicamente el orden en que han sido escritas.

Este tipo de estructura es ideal cuando todas las acciones deben realizarse exacta-
mente una a la vez y en el mismo orden.

Con el fin de ilustrar de manera más precisa el uso de la estructura secuencial, se
propone la resolución del siguiente problema.

u Combo Gamer RGB

Luis, un joven streamer, está armando su setup gamer para transmitir sus partidas
en Twitch. En su carrito tiene un mouse gamer RGB, unos audífonos con micrófono
profesional y un tapete luminoso para el mouse.

Cada artículo tiene su precio, pero al pagar deberá sumarse el IVA del 16 %. Tu mi-
sión es ayudar a Luis a crear un algoritmo para calcular el total final de su compra.

¿Sabías qué…?

Un simple error en el orden secuen-
cial de las instrucciones puede cam-
biar completamente el resultado de
un programa.

Estructura secuencial

2.2 Estructuras de control

38 PENSAMIENTO COMPUTACIONAL

Progresión 2

Entrada
Tres números reales separados por un espacio: el precio del mouse, de los audífo-
nos y del tapete RGB.

Salida
Un número real con dos decimales: el total a pagar incluyendo IVA.

Entrada Salida

399.90
649.50
199.00

1448.14

Algoritmo en PSeInt

 Algoritmo ComboRGB
 Definir mouse,audifonos,tapete,total,iva Como Real
 mouse <- 0
 audifonos <- 0
 tapete <- 0
 total <- 0
 iva <- 0

 Escribir “Precio del mouse: ”
 Leer mouse

 Escribir “Precio de los audífonos: ”
 Leer audifonos

 Escribir “Precio del tapete: ”
 Leer tapete
	
 total <- (mouse + audífonos + tapete) * 1.16
 total <- trunc(total*100)/100
	
 Escribir “Total a pagar: ”,total	

 FinAlgoritmo

Estructuras condicionales

Este tipo de estructuras permiten “tomar decisiones” dentro de un algoritmo. En
la vida cotidiana, se usan constantemente frases como:

u “Si llueve, llevaré paraguas.”
u “Si es de noche, encenderé la luz; si no, la apagaré.”
u “Si saco buena calificación en Pensamiento Computacional, celebraré; si no,
estudiaré más.”

En programación ocurre algo similar, el algoritmo ejecuta una acción solo si se
cumple cierta condición lógica.

¿Sabías qué…?

Usar correctamente los condiciona-
les puede mejorar la eficiencia del
programa al evitar operaciones inne-
cesarias.

39PENSAMIENTO COMPUTACIONAL

Progresión 2

PSeInt utiliza la palabra clave SI para expresar este tipo de decisiones. Dependien-
do de la complejidad, existen varias formas de estructuras condicionales: simple,
doble, anidada y según la opción.

u Condicional Simple

La estructura simple evalúa una condición lógica y si se cumple, ejecuta una o más
instrucciones; de lo contrario, continúa con el flujo normal del programa.

La sintaxis de un condicional simple sería así:

 Si (condición) Entonces
 // instrucciones a ejecutar si se cumple la condición
 FinSi

El ejemplo que se muestra a continuación evidencia la aplicación del condicional simple.

u Acceso al concierto

La banda de rock Jayler está por comenzar su concierto en la ciudad de Mazatlán,
la entrada al concierto solo está permitida para mayores de 15 años.

Te han contratado para que ayudes a la banda a controlar el acceso a través de
una aplicación, para eso necesitas crear un algoritmo que reciba la edad de una
persona y determine si puede acceder al concierto.

Entrada
Un número entero que representara la edad del asistente.

Salida
Un mensaje con el texto “Acceso permitido. Disfruta el concierto!” si el asistente
cumple con la condición para acceder al concierto.

Entrada Salida

¿Cuál es tu edad? 16 Acceso permitido. Disfruta el concierto!

¿Cuál es tu edad? 15

Algoritmo en PSeInt

 Algoritmo ConciertoJayler
 Definir edad Como Entero
 edad <- 0
 Escribir “¿Cuál es tu edad?”
 Leer edad
		
 Si (edad > 15) Entonces
 Escribir “Acceso permitido. Disfruta el concierto!”
 FinSi

 FinAlgoritmo

Estructura condicional simple

Para saber más…

Accede al video Estructura de con-
trol Simple en PSeInt, para ampliar
la explicación del tema. Hazlo esca-
neando el Código QR.

¿Sabías qué…?

Puedes usar condicionales para mos-
trar diferentes mensajes, validar da-
tos o controlar el flujo del programa.

40 PENSAMIENTO COMPUTACIONAL

Progresión 2

Estructura condicional doble

Para saber más…

Escanea el código QR y observa el
video Estructura condicional doble
en PSeInt.

u Condicional doble

La estructura condicional doble agrega una alternativa cuando la condición no se
cumple. En este caso, se usa la palabra clave Sino, que indica que instrucciones
ejecutar en el caso de que no sea cumplida la condición.

La sintaxis de un condicional doble, sería así:

 Si (condición) Entonces
 // Bloque de instrucciones si se cumple la condición
 Sino
 // Bloque de instrucciones si NO se cumple la condición
 FinSi

A continuación, se presenta un ejemplo que pone en práctica la estructura condi-
cional doble.

u Descuento Estudiantil GeekBooks

La tienda digital GeekBooks premia a los estudiantes aplicando un 10% de des-
cuento en cualquier libro digital si presentan su credencial escolar.

Entrada
Un número real que indica el precio del libro,
Un carácter que indica si el cliente presenta credencial de estudiante o no (S=si, N=no)

Salida
Un mensaje compuesto por el texto: “Total a pagar: ” unido con el número real que
corresponde al monto total a pagar.

Entrada Salida

¿Cuál es precio del libro digital? 250.00
¿Credencial de estudiante? S

Total a pagar: 225.00

¿Cuál es precio del libro digital? 250.00
¿Credencial de estudiante? N Total a pagar: 250.00

41PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de es-
tructura condicional simple y doble.

Algoritmo en PSeInt

 Algoritmo DescuetoEstudiantil
 Definir precio,total Como Real
 Definir credencial Como Caracter
	
 precio <- 0
 total <- 0
 credencial <- ‘’
	
 Escribir “¿Cuál es el precio del libro?”
 Leer precio
 Escribir “¿Tienes credencial de estudiante? (S o N)”
 Leer credencial

 Si (credencial= ‘S’ O credencial= ‘s’) Entonces
 total <- precio * .90
 SiNo
 total <- precio
 FinSi
	
 total <- trunc(total * 100) / 100

 Escribir “Total a pagar: ”, total
 FinAlgoritmo

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje realiza de manera individual y con la guía de tu profe-
sor la siguiente actividad:

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema para aplicar el uso de la estructura condicional simple y doble.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E02.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

42 PENSAMIENTO COMPUTACIONAL

Progresión 2

Estructura condicional anidada

Para saber más…

Accede al video Estructura de con-
trol Anidada en PSeInt, para ampliar
la explicación del tema. Hazlo esca-
neando el Código QR.

u Condicional anidada

En el desarrollo de algoritmos, una sola condición no siempre resulta suficiente
para decidir qué debe hacer un programa. Cuando la decisión depende de varios
factores al mismo tiempo, es necesario utilizar una estructura que permita revisar
más de una condición de manera ordenada. En estos casos, las condicionales ani-
dadas se convierten en un recurso importante, ya que permiten colocar una con-
dición dentro de otra para establecer un orden lógico en la toma de decisiones.

El uso de condicionales anidadas responde a la necesidad de relacionar distintos
criterios que influyen en el funcionamiento del programa. En muchos problemas, la
primera condición solo sirve para identificar un conjunto general de posibilidades,
y cada una de ellas requiere luego una verificación más específica. Esta forma de
organización ayuda a que el algoritmo sea más preciso y pueda adaptarse a situa-
ciones diversas, evitando soluciones demasiado simples o poco flexibles.

En la práctica, estas estructuras son especialmente útiles en algoritmos que deben
realizar varias verificaciones, como sistemas de acceso seguro, cálculos con dife-
rentes rangos de valores o programas que dependen de ciertos parámetros del
entorno. En todos estos casos, las condicionales anidadas ayudan a que el progra-
ma responda de manera adecuada a distintas situaciones y evite errores lógicos.

Finalmente, aunque las condicionales anidadas son una herramienta valiosa, no
siempre representan la mejor opción. Cuando el número de condiciones es muy
grande o su relación es compleja, puede ser más conveniente utilizar otras estrate-
gias, como tablas de decisión, operadores lógicos combinados o métodos propios
de la programación orientada a objetos. Elegir la alternativa adecuada permite
mejorar tanto el rendimiento del programa como la facilidad para entender y man-
tener el código.

El lenguaje PSeInt admite esta modalidad mediante la reiteración de bloques del
tipo Si…Entonces…Sino dentro de otros similares, facilitando así una lógica de
decisión más compleja y estructurada.

La sintaxis de una condicional anidada sería:

 Si (condición1) Entonces
 // Bloque de instrucciones de condición1
 Sino
 Si (condición2) Entonces
 // Bloque de instrucciones de condición2
 Sino
 // Bloque de instrucciones si no cumplen condición 1 y 2
 FinSi

43PENSAMIENTO COMPUTACIONAL

Progresión 2

El ejemplo siguiente tiene como propósito mostrar la estructura de condicional
anidada.

u Héroe digital

En el videojuego “Héroes del Código”, los jugadores obtienen recompensas dia-
rias según su nivel y si completaron el reto del día.

Dependiendo de su esfuerzo, pueden recibir desde simples monedas hasta una
skin épica legendaria.

Reglas del juego:
	 Nivel ≥ 20
	 Reto completado → Skin Épica
	 No completado → Skin Rara
	 Nivel < 20
	 Reto completado → Caja de Ítems
	 No completado → Monedas x100

Crea un algoritmo que sea capaz de determinar la recompensa del jugador.

Entrada
Un número entero que indica el nivel del jugador
Un carácter simboliza si se cumplió o no el reto (S=si, N=no)

Salida
Mensaje con la recompensa obtenida por el jugador

Entrada Salida

¿Cuál es nivel del héroe? 22
¿Reto completado? S

Skin Épica

¿Cuál es nivel del héroe? 22
¿Reto completado? N

Skin Rara

¿Cuál es nivel del héroe? 19
¿Reto completado? S

Caja de Items

¿Cuál es nivel del héroe? 19
¿Reto completado? N Monedas x100

44 PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de la es-
tructura condicional anidada.

Algoritmo en PSeInt

 Algoritmo HeroeDigital
	 Definir nivel Como Entero
	 Definir reto Como Caracter
	
	 nivel <- 0
	 reto <- ‘’
	
	 Escribir “¿Cuál es el nivel del jugador?”
	 Leer nivel
	 Escribir “¿Completó el reto diario? (S=si, N=no)”
	 Leer reto
	
	 Si (nivel >= 20) Entonces
		 Si (reto= ‘s’ O reto= ‘S’) Entonces
			 Escribir “Skin Épica”
		 SiNo
			 Escribir “Skin Rara”
		 FinSi
	 SiNo
		 Si (reto= ‘S’ O reto= ‘s’) Entonces
			 Escribir “Caja de Ítems”
		 SiNo
			 Escribir “Monedas x100”
		 FinSi
	 FinSi
 FinAlgoritmo

Ejercitando mis conocimientos --
Fortalece tu dominio de las estructuras condicionales anidadas elaborando de ma-
nera individual y con la ayuda de tu profesor la actividad propuesta:

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema para aplicar el uso de la de la Estructura Condicional Anidada.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E03.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

45PENSAMIENTO COMPUTACIONAL

Progresión 2

Estructura repetitiva
según…hacer

Para saber más…

Escanea el código QR y observa el
video Estructura condicional Según
la opción en PSeInt.

u Estructura Según…Hacer

La estructura Según…Hacer, equivalente a switch o case en otros lenguajes de
programación, se utiliza cuando es necesario tomar decisiones basadas en el valor
de una sola variable con múltiples opciones posibles. Su uso resulta más ordenado
y legible que el de varias estructuras condicionales anidadas, especialmente cuan-
do existen muchas alternativas de ejecución.

La sintaxis de la estructura Según…Hacer es la siguiente:

 Según variable Hacer
 Opción 1:
 // Instrucciones si variable = Opción 1
 Opción 2:
 // Instrucciones si variable = Opción 2
 De Otro Modo:
 // Instrucciones si no coincide ninguna opción
 FinSegún

En el siguiente ejemplo se expone la aplicación de la estructura Según…Hacer.

u Reacciones en Red Social

Una nueva red social llamada MoodWave registra las reacciones de los usuarios en
publicaciones.

Cada reacción tiene un código numérico:
	 1. “Me gusta”
	 2. “Me encanta”
	 3. “Me asombra”
	
De otro modo: “Reacción no válida”

Esta red social esta reclutando gente para desarrollar el algoritmo que muestre la
reacción correspondiente, así que diseña el algoritmo para quedarte con el puesto
de programador.

Entrada
Un número entero que representa el código de la reacción

Salida
El mensaje que indica la reacción correspondiente al código, en caso de recibir un
código que no existe en la tabla se debe mostrar el mensaje “Reacción no válida”.

Entrada Salida

¿Qué código de reacción deseas usar? (1-5): 4 Me divierte

¿Qué código de reacción deseas usar? (1-5): 1 Me gusta

¿Qué código de reacción deseas usar? (1-5): 6 Reacción no válida

4. “Me divierte”
5. “Me entristece”

46 PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de la es-
tructura condicional segun…hacer.

Algoritmo en PSeInt

 Algoritmo RedSocial
 Definir reaccion Como Entero
 reaccion <- 0
	
 Escribir “¿Qué código de reacción deseas usar? (1-5)”
 Leer reaccion
	
 Segun reaccion Hacer
	 1: Escribir “Me gusta”
	 2: Escribir “Me encanta”
	 3: Escribir “Me asombra”
	 4: Escribir “Me divierte”
	 5: Escribir “Me entristece”
	 De Otro Modo: Escribir “Reacción no válida”
 FinSegun
 FinAlgoritmo

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje realiza de manera individual y con la guía de tu profe-
sor la siguiente actividad:

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Condicional Segun…Hacer.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E04.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

47PENSAMIENTO COMPUTACIONAL

Progresión 2

Estructura repetitiva

mientras…hacer

¿Sabías qué…?

Un bucle infinito ocurre cuando la
condición de salida nunca se cum-
ple, y el programa sigue repitiéndo-
se sin fin.

Estructuras repetitivas
En el desarrollo de algoritmos, es común encontrar situaciones en las que ciertas
operaciones deben repetirse múltiples veces.

Escribir el pseudocódigo de estas instrucciones de forma repetitiva resulta poco
práctico y aumenta la posibilidad de cometer errores. Por esta razón, se incorporan
estructuras de control conocidas como bucles, ciclos o estructuras repetitivas,
las cuales permiten ejecutar un conjunto de instrucciones de manera automatizada
y controlada, optimizando la eficiencia del código y facilitando su compresión.

En el desarrollo de algoritmos existen tres tipos principales de estructuras repetiti-
vas, en el caso de PSeInt son las siguientes:

u Mientras…Hacer
u Repetir…Hasta Que
u Para…Hasta…Con Paso

Cada una de las mencionadas estructuras repetitivas tiene características particula-
res y se utilizan según el tipo de repetición que se necesite.

u Estructura Mientras…Hacer

La estructura de control Mientras permite la ejecución repetitiva de un conjunto
de instrucciones siempre que se cumpla una condición lógica determinada. Esta
condición se evalúa antes de cada iteración, lo que significa que el bloque de có-
digo se ejecutará únicamente mientras la condición sea verdadera.

Cuando la condición deja de cumplirse, es decir, cuando se evalúa como falsa, el
ciclo se interrumpe y el flujo del programa continúa con la siguiente instrucción
fuera del Mientras...Hacer.

La sintaxis de la estructura repetitiva Mientras…Hacer es la siguiente:

 Mientras (condición) Hacer
 // Bloque de instrucciones
 FinMientras

El momento de evaluar la condición es antes de ejecutar el bloque, lo que significa
que, si la condición es falsa desde el principio, el ciclo no se ejecutará ni una sola vez.

Se presenta a continuación un ejemplo que pone en práctica la estructura repeti-
tiva Mientras…Hacer.

u Pasos FitLife

La app FitLife necesita una actualización que motive más a moverse a sus usuarios.
Diseña un algoritmo que permita registrar los pasos que da cada usuario hasta
lograr la meta.

48 PENSAMIENTO COMPUTACIONAL

Progresión 2

¿Sabías qué…?

Las estructuras repetitivas permiten
que una computadora haga en se-
gundos lo que a ti te tomaría horas.

Para saber más…

Accede al video Estructura repetiti-
va Mientras en PSeInt, para ampliar
la explicación del tema. Hazlo esca-
neando el Código QR.

Entrada
Primero un entero que simboliza la meta en a cumplir en cantidad de pasos.
Varias líneas con un entero que corresponden a los pasos dados cada día.

Salida
Un mensaje que indicará que la meta fue alcanzada y la cantidad de días que tardó
en lograrla.

Mensaje: “¡Meta alcanzada en <número de días> días!”

Algoritmo en PSeInt

 Algoritmo FitLife
 Definir dias,meta,pasosDia,acumulado Como Entero

 dias <- 1
 meta <- 0
 pasosDia <- 0
 acumulado <- 0
	
 Escribir “¿Cuál es tu meta de pasos?”
 Leer meta
	
 Mientras (acumulado < meta) Hacer
	 Escribir “Pasos día ”,dias, “:”
	 Leer pasosDia
	 acumulado <- pasosDia + acumulado
	 dias <- dias + 1
 FinMientras
	
 Escribir “¡Meta alcanzada en ”,dias-1,“ días!”

 FinAlgoritmo

Ejercitando mis conocimientos --
Fortalece tu dominio de la estructura repetitiva mientras…hacer elaborando la si-
guiente actividad:

Entrada Salida

¿Cuál es tu meta de pasos? 2000

Pasos día 1: 125
Pasos día 2: 350
Pasos día 3: 634
Pasos día 4: 500
Pasos día 5: 360
Pasos día 6: 800

¡Meta alcanzada en 6 días!

49PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de la es-
tructura repetitiva mientras…hacer.

Estructura repetitiva
repetir…hasta

Para saber más…

Escanea el código QR y observa el
video Estructura de control Repetir
hasta en PSeInt.

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema donde aplicaras el uso de Estructura Repetitiva Mientras…Hacer.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su funciona-
miento con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E05.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

u Estructura Repetir…Hasta Que

La estructura Repetir…Hasta Que cumple una función similar a la del ciclo Mien-
tras, con la diferencia de que evalúa la condición al final de cada iteración. Esto
implica que el bloque de instrucciones se ejecuta al menos una vez, sin importar
el valor inicial de la condición.

En términos de lógica, podría decirse que Mientras es una repetición controlada
por la condición al inicio, y Repetir…Hasta Que es una repetición controlada por
la condición al final.

La sintaxis de la estructura repetitiva Repetir…Hasta Que es la siguiente:

 Repetir
 // Bloque de instrucciones
 Hasta Que (condición)

El ciclo se repetirá mientras la condición sea falsa, y se detendrá cuando la condi-
ción se vuelva verdadera.

Con el fin de ilustrar de manera más precisa el uso de estructura repetitiva Repetir…
Hasta Que, se propone la resolución del siguiente ejercicio. En este caso, se busca
validar la contraseña del usuario.

u PIN de seguridad UltraApp

La app UltraApp es una aplicación que ayuda a mantener información protegida con
un PIN de 4 dígitos. La app solo se desbloquea si el usuario ingresa el PIN correcto.

Como buen estudiante de pensamiento computacional quieres demostrar que pue-
des diseñar un algoritmo que sea eficiente para entender como funciona la aplica-
ción UltraApp.

Entrada
Una cadena de caracteres que simboliza el nombre del usuario.
Un numero entero que es el NIP que permite bloquear la información
Un numero entero que es el código que se está ingresando para desbloquear.

50 PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de la es-
tructura repetir…hasta.

Salida
Mensaje de acceso concedido: “Acceso concedido, Bienvenido <usuario> a UltraApp!”

Algoritmo en PSeInt

 Algoritmo UltraApp
	 Definir NIP,NIP2 Como Entero
	 Definir nombre Como Caracter
	
	 NIP <- 0
	 NIP2 <- 0
	 Nombre <- “”
	
	 Escribir “Cuál es tu nombre de usuario?”
	 Leer usuario
	 Escribir “Introduce el NIP secreto:”
	 Leer NIP
	 Escribir “Accede a UltraApp”
	
	 Repetir
		 Escribir “NIP: ”
		 Leer NIP2
	 Hasta Que NIP=NIP2
	 Escribir “Acceso concedido, Bienvenid@ ”,nombre,“ a
 UltraApp”
 FinAlgoritmo

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje realiza de manera individual y con la guía de tu profe-
sor la siguiente actividad:

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Condicional Repetir…Hasta.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su fun-
cionamiento con los casos de ejemplo y otros valores adicionales que tu profesor
indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E06.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

Entrada Salida

¿Cuál es tu nombre de usuario? Brithany
Introduce el NIP secreto: 0212

Accede a UtraApp
NIP: 3405
NIP: 0212

Acceso concedido,
Bienvenid@ Brithany a UltraApp!

51PENSAMIENTO COMPUTACIONAL

Progresión 2

Estructura repetitiva Para

Para saber más…

Accede al video Estructura de con-
trol Para en PSeInt, para ampliar la
explicación del tema. Hazlo esca-
neando el Código QR.

¿Sabías qué…?

Dentro de las estructuras repetiti-
vas puedes usar instrucciones como
break o continue para controlar me-
jor el flujo de repetición.

u Estructura Para…Hasta…Con Paso

La estructura Para se utiliza cuando se sabe de antemano cuántas veces debe
repetirse un conjunto de instrucciones. Es ideal para recorrer un rango numérico
o realizar cálculos que implican un contador definido.

La estructura Para incluye tres elementos clave:

1. Variable de control: variable que toma valores consecutivos.
2. Límite inicial y final: determinan desde qué valor comienza y hasta cuál termina.
3. Paso: indica el incremento o decremento entre una iteración y otra (por defecto es 1).

La sintaxis de la estructura repetitiva Para es la siguiente:

 Para variable ← inicio Hasta fin Con Paso incremento Hacer
 // Bloque de instrucciones
 FinPara

El bloque de instrucciones se ejecuta mientras la variable esté dentro del rango
definido. El ejemplo que se muestra a continuación evidencia la aplicación de la
estructura repetitiva Para…Hasta.

u Likes por hora - Influencer Simulator

Te decidiste a convertirte en un creador de contenido y deseas analizar el rendi-
miento de tus publicaciones en redes sociales.

Durante varios días anotas el porcentaje de likes que obtuviste cada día respecto
al número de vistas. Pero, necesitas calcular el promedio general de likes de todos
esos días para conocer tu desempeño. Por eso decides crear un algoritmo que
pida cuántos días deseas evaluar y luego solicite el porcentaje de likes por día.

Finalmente, mostrará el promedio general de likes redondeado a un decimal y un
mensaje que indique si su rendimiento fue excelente, aceptable o necesita mejorar.

Entrada
Un número entero que representa los días que se van a evaluar, seguido de la
cantidad de likes para cada uno de los días sleccionados por medio de números
enteros que corresponden al porcentaje de likes obtenidos en cada día.

Salida
Un mensaje con el promedio de likes.
Mensaje: “Promedio general de likes <promedio>”

Entrada Salida

¿Cuántos días deseas evaluar? 5
Porcentaje de likes el día 1: 85
Porcentaje de likes el día 2: 78
Porcentaje de likes el día 3: 92
Porcentaje de likes el día 4: 87
Porcentaje de likes el día 5: 80

Promedio general de likes:
84.40

52 PENSAMIENTO COMPUTACIONAL

Progresión 2

Recurso digital

Escanea el código QR para descar-
gar el archivo del problema de la es-
tructura para…hasta.

Algoritmo en PSeInt

 Algoritmo PromedioLikes
	
	 Definir dias, i Como Entero
	 Definir likes, promedio Como Real
	 dias <- 0
	 likes <- 0
	 promedio <- 0
	 i <- 0
	
	 Escribir “¿Cuántos días deseas evaluar?”
	 Leer dias

	 Para i <- 1 Hasta dias Con Paso 1 Hacer
		 Escribir “Porcentaje de likes dia ”,i,“: ”
		 Leer likes
		 promedio <- promedio + likes
	 FinPara
	
	 promedio <- promedio / dias
	
	 Escribir “promedio general de likes: ”,promedio

 FinAlgoritmo	

Ejercitando mis conocimientos --
Refuerza tu comprensión sobre el manejo de estructuras repetitivas para…hasta
desarrollando el ejercicio de manera individual y con la guía de tu profesor:

1. Descarga el archivo PDF escaneando el código QR donde encontraras un pro-
blema donde aplicaras el uso de la Estructura Repetitiva Para…Hasta.

2. Genera el algoritmo en PSeInt, y una vez terminado, ejecuta y prueba su funciona-
miento con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_E07.

4. Comparte ambos archivos con tu profesor para recibir retroalimentación por el
medio que acuerden.

La estructura de control repetitiva Para se utiliza en una amplia variedad de situa-
ciones y tiene múltiples aplicaciones. En el ejemplo anterior se empleó para generar
una secuencia de números con un incremento específico. Además, es útil para reco-
rrer los elementos de un arreglo, lo que simplifica tareas de lectura, procesamiento y
escritura de datos (el concepto de arreglo se trabajará en una progresión posterior).

Además, también puede utilizarse en combinación con estructuras de control con-
dicionales, como se ha analizado anteriormente.

El dominio de las estructuras de control es un pilar fundamental para todo aquel
que se inicia en el área de la programación.

53PENSAMIENTO COMPUTACIONAL

Ventajas de combinar diferentes estructuras de control

1. Permiten crear programas más completos, capaces de crecer y adaptarse a
nuevas funciones.
2. Mejoran la organización del código, lo que facilita su lectura, mantenimiento
y modificación.
3. Favorece la reutilización de instrucciones, ahorrando tiempo en tareas similares.
4. Hacen posible la toma de decisiones dentro del programa, de acuerdo con la
información proporcionada por el usuario.
5. Facilitan la ejecución repetida de acciones sin necesidad de escribir múltiples
veces las mismas instrucciones.

Las estructuras de control son fundamentales para desarrollar programas interacti-
vos, como sistemas de gestión, videojuegos o simulaciones.

El aprendizaje mediante PSeInt proporciona una base sólida, ya que prioriza la
lógica algorítmica y contribuye a que se desarrolle una mentalidad analítica antes
de enfrentarse a lenguajes de programación formales.

Ejercitando mis conocimientos --

De manera colaborativa en clase presencial, realicen lo siguiente:

1. En un documento de MS Word elaboren una tabla comparativa, donde analicen
y comparen las tres estructuras de control principales:

u Estructuras secuenciales
u Estructuras condicionales
u Estructuras repetitivas

Para cada estructura, incluyan los siguientes aspectos:

2. Agreguen al final de la tabla una pequeña conclusión donde reflexionen porque
consideran que es necesario el uso de estructuras de control en el diseño de algo-
ritmos para resolver problemas.

3. Guarden el documento usando en el nombre del archivo el número de equipo
seguido de _PC_P2_E08

4. Compartan el documento con su profesor por el medio que hayan acordado.

Progresión 2

Aspectos para comparar Descripción

Uso o propósito principal ¿Para qué tipo de problema se utiliza?

Funcionamiento lógico ¿Cómo se ejecutan las instrucciones en esta estructura?

Ejemplo de problema donde se aplica Describan una situación cotidiana o algorítmica donde se usaría.

Sintaxis básica en PSeInt Escribe la estructura correcta en PSeInt.

Ventajas y limitaciones Comentar cuándo es más eficiente o cuándo no conviene usarla.

54 PENSAMIENTO COMPUTACIONAL

Progresión 2

Concretando mis conocimientos
Es tiempo de demostrar tu aprendizaje de los temas de Algoritmia en IDE, reúnete
con tu equipo de trabajo y de manera colaborativa realicen lo siguiente:

1. Inicia un nuevo algoritmo en PSeInt que resuelva el siguiente problema: Cerebro
Neuronal – Entrenando a mi IA.

La empresa NeuraMind te ha invitado a participar en la calibración de su nuevo mo-
delo de inteligencia artificial llamado NeuroCore. Este modelo aprende a reconocer
patrones visuales, y su nivel de precisión mejora con cada ronda de entrenamiento.
Sin embargo, los científicos notaron tres comportamientos importantes durante las
pruebas:

u Avance constante: en cada ronda, el modelo gana cierta cantidad de precisión
que siempre está relacionada con una tasa base de aprendizaje establecida por los
ingenieros.

u Progreso acumulativo: mientras más rondas se completan, la IA mejora más
rápido porque “aprende a aprender”.

u Fatiga del sistema: a pesar de la mejora continua, en cada entrenamiento el
sistema pierde un poco de rendimiento por la sobrecarga de datos (0.5 cada ronda).

Con base en estos tres factores, tu equipo deberá descubrir y proponer una fórmula
matemática que modele el aumento de la precisión del modelo de IA en cada ronda,
partiendo de un valor inicial del 50% de precisión.

El modelo se considerará listo para implementarse si la precisión es mínima de 90 %.

Entrada
Deberán recibirse tres datos:

l El nombre del modelo de IA.
l Un número real que corresponde a la tasa base de aprendizaje.
l Un entero que es la cantidad de rondas de entrenamiento.

Salida
l Se deberá mostrar un mensaje que indique el nombre del modelo y que el en-
trenamiento ha iniciado.
l Después un mensaje por cada ronda de entrenamiento con la precisión actual
de la ronda.
l Por último, un mensaje que indique si el modelo está listo para usarse o se reco-
mienda continuar ajustando parámetros.

55PENSAMIENTO COMPUTACIONAL

Progresión 2

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en esta progresión, realiza la
actividad interactiva, ingresa a ella
escaneando el código QR

2. Una vez terminado el algoritmo ejecuta y comprueba su correcto funcionamien-
to con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el algoritmo creado en PSeInt colocando en el nombre del archivo tus
iniciales seguidas de _PC_P2_CMC.

4. Comparte con tu profesor por el medio que indique tu algoritmo probado y listo
para recibir evaluación.

Instrumento de evaluación
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluará tu programa en PSeInt.

Indicador Si No Puntos

El algoritmo solicita correctamente los tres
datos de entrada (nombre, tasa de aprendiza-
je, rondas).

1

Se muestra un mensaje inicial indicando el
nombre del modelo y el inicio del entrena-
miento.

1

Se calcula correctamente la precisión en cada
ronda considerando los tres factores: avance
constante, progreso acumulativo y fatiga.

3

Se muestra la precisión actual en cada ronda
con formato claro y comprensible.

2

Se incluye una condición final que evalúa si el
modelo está listo (≥ 90%) o necesita ajustes.

2

El código está bien estructurado, con buena
indentación y uso adecuado de variables.

1

Entrada Salida

• Ingresa el nombre del modelo de IA: OrionNet
• Ingresa la tasa base de aprendizaje (%): 3
• Ingresa el número total de rondas de entrenamiento: 5

• Modelo: OrionNet
Entrenamiento de IA iniciado...
• Ronda 1 - Precisión actual: 52.5%
• Ronda 2 - Precisión actual: 58%
• Ronda 3 - Precisión actual: 66.5%
• Ronda 4 - Precisión actual: 78%
• Ronda 5 - Precisión actual 92.5%
• Entrenamiento exitoso: El modelo está listo para usarse.

• Ingresa el nombre del modelo de IA: AlphaNet
• Ingresa la tasa base de aprendizaje (%): 2.5
• Ingresa el número total de rondas de entrenamiento: 4

• Modelo: AlphaNet
Entrenamiento de IA iniciado...
• Ronda 1 - Precisión actual: 52.5%
• Ronda 2 - Precisión actual: 56.5%
• Ronda 3 - Precisión actual: 63.5%
• Ronda 4 - Precisión actual: 73%
• Entrenamiento incompleto: se recomienda continuar
ajustando parámetros

56 PENSAMIENTO COMPUTACIONAL

Progresión 2

Valorando mi aprendizaje
La evaluación es un proceso continuo de formación, útil para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentación y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guían en
la valoración de los aprendizajes que adquiriste progresivamente en las primeras dos
secuencias didácticas. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendí
Contesta las siguientes preguntas y reflexiona sobre tu desempeño en estas dos
progresiones.

l ¿Cuál de las cuatro fases del pensamiento computacional (descomposición, re-
conocimiento de patrones, abstracción y diseño de algoritmos) te resultó más fácil
de comprender y aplicar? ¿Por qué?

l Imagina que debes enseñarle a un compañero qué es un algoritmo. ¿Qué ejem-
plo sencillo usarías y por qué lo elegirías para facilitar su comprensión?

l ¿Cómo te ayudó PSeInt a visualizar o comprender la lógica detrás de las estruc-
turas secuenciales, condicionales o repetitivas? Explica con un ejemplo.

l Después de trabajar estos temas ¿qué crees que te falta reforzar o seguir prac-
ticando en relación con la creación y análisis de algoritmos? Explica cómo planeas
mejorar.

Actividad alternativa
Resuelve la siguiente actividad alternativa para reforzar tus aprendizajes e incre-
mentar tu evaluación sumativa.

1. Demuestra tu aprendizaje en el tema resolución de problemas estructurados
creando un video acerca de las fases del pensamiento computacional.

2. Explica cada una de las fases de manera clara.

3. Puedes guiar el video resolviendo algún problema sencillo y cotidiano.

4. Publícalo y envía en enlace a tu profesor para que observe el video y evalúe tu
actividad.

57PENSAMIENTO COMPUTACIONAL

Progresión 2

Autoevaluación
La autoevaluación es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una √ la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Metas Criterios
Nivel de dominio

Sí lo
logro

En
proceso

Aún no
lo logro

Identifica los principios del pensamien-
to computacional, su descomposición,
abstracción y patrones para diseñar,
implementar y evaluar algoritmos de
problemas de su vida cotidiana.

Identifico los principios del pensamiento computacional.

Aplico cada una de las fases para resolver problemas cotidianos.

Representa la solución de problemas
mediante pensamiento algorítmico selec-
cionando métodos, diagramas o técnicas.

Organizo los pasos del algoritmo de manera clara y lógica.

Represento soluciones mediante pseudocódigo y diagramas de flujo.

Aplica lenguaje algorítmico utilizando
medios digitales para resolver situacio-
nes o problemas del contexto.

Traduzco mis soluciones algorítmicas a pseudocódigo en un entorno digital.

Ejecuto mis algoritmos en PSeInt para validar su funcionamiento.

Identifica situaciones de la vida cotidiana
que pueden resolverse de manera más
eficiente utilizando secuencias y ciclos.

Reconozco problemas que pueden resolverse con secuencias y ciclos.

Selecciono la estructura de control adecuada (secuencia, condicional o
repetitiva) en la resolución de problemas.

Comprueba la lógica y funcionamiento
de algoritmos para representar sus solu-
ciones mediante IDE corrigiendo errores
y optimizando el código.

Compruebo el funcionamiento de mis algoritmos mediante la ejecución en el
IDE.

Identifico errores de sintaxis, de lógica y de ejecución en PSeInt.

Lo mejor que aprendí fue:

Lo que necesito reforzar es:

Calificación que doy a mi desempeño:
Excelente Satisfactorio En desarrollo Inicial

Coevaluación
Evalúa el desempeño general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluación y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos faltó (2) Debemos mejorar (1) Evaluación

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

Se organizó el trabajo, pero no se estipularon
tareas, prioridades o el plazo de entrega final.

No hubo organización para realizar nues-
tros trabajos.

Cumplimos cada uno con las tareas asig-
nadas en el plazo estipulado.

Casi todos los miembros del equipo cumplimos
con las tareas asignadas y el plazo estipulado;
teniendo que resolver lo que a otros les fue
encomendado.

Un solo miembro del equipo realizó todos
los productos.

Todos participamos activamente en la
elaboración de los productos.

Casi todos los miembros del equipo partici-
pamos activamente en la elaboración de los
productos.

No hubo participación de los miembros
del equipo en la elaboración de los
productos.

La calidad de los productos que elabora-
mos fue la adecuada para su entrega.

La calidad de los productos que elaboramos fue
en su mayoría la adecuada para su entrega.

No se cumplió con la calidad adecuada
de los productos para su entrega.

Total ___ de 12

58 PENSAMIENTO COMPUTACIONAL

Codifica instrucciones en un lenguaje de programación estructurada, empleando estructuras de control secuenciales
y repetitivas para determinar el orden lógico y eficiente en que se ejecutan en la resolución de problemas.

Tiempo estimado: 9 horas

Tus metas serán:
l Distinguir la sintaxis básica de C++ y la utilidad de las estructuras de control para organizar la ejecución de
 instrucciones.

l Representar soluciones a problemas cotidianos y académicos mediante algoritmos que incorporan estructuras
 de control secuenciales y repetitivas.

l Codificar, compilar y ejecutar programas en C++ validando su funcionamiento y corrigiendo errores en el uso de
 estructuras de control.

Programación estructurada en C++:
Estructuras de control Pr

og
re

si
ón

3

Recuperando lo que sabemos

Este cuestionario es de recuperación de conocimientos previos, es útil para identificar tus saberes y habilidades y cómo
los relacionas con la realidad, además te ayudará a comprender mejor los temas de esta secuencia. No es necesario que
conozcas los términos técnicos; lo importante es expresar cómo entiendes o aplicarías cada situación, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. ¿Qué entiendes por programar y por qué crees que es importante en la actualidad?

2. ¿Qué problemas cotidianos crees que podrían resolverse mediante la programación?

3. ¿Cómo imaginas que se comunica una computadora con el programador para ejecutar instrucciones?

4. ¿Qué opinas de la relación entre lógica y programación? ¿Por qué crees que son importantes juntas?

59PENSAMIENTO COMPUTACIONAL

Progresión 3

Reactivando mis conocimientos

Imagina que eres un pequeño robot que solo entiende un conjunto limitado de instrucciones. Tu misión es salir del laberinto
de la imagen, utilizando la menor cantidad de instrucciones posibles.

¡Pistas importantes!
1. Asume que el robot siempre empieza mirando hacia arriba desde la posición de INICIO.
2. El laberinto tiene puntos en su interior.
3. Cada vez que uses AVANZAR_1_PASO, el robot se moverá de un punto a otro.
4. Si detectas que tienes que hacer la misma acción varias veces seguidas, puedes usar la instrucción
REPETIR X VECES (acción) para ahorrar órdenes.

Escribe en tu cuaderno de notas la secuencia de instrucciones
para que el robot salga del laberinto, comenzando en INICIO
y terminando en SALIDA. Intenta ser lo más eficiente posible
usando REPETIR.

Instrucciones disponibles para el robot:

l AVANZAR_1_PASO - Cada paso te lleva al siguiente punto.

l GIRAR_DERECHA - Gira 90° a la derecha, manteniendo tu
posición actual.

l GIRAR_IZQUIERDA - Gira 90 a la izquierda, manteniendo
tu posición actual.
l REPETIR_VECES (acción) Por ejemplo
REPETIR 3 VECES (AVANZAR_1_PASO)

60 PENSAMIENTO COMPUTACIONAL

Progresión 3

¿Sabías qué…?

En este símbolo universal, la línea ver-
tical representa encendido, mientras
que el círculo, el apagado; conven-
ción que en 1973 se estandarizo para
los dispositivos electrónicos basán-
dose en los símbolos binarios 1 – En-
cendido y 0 – Apagado.

Relaciónalo con...

En los inicios de la computación,
las tarjetas perforadas, hechas de
cartulina, eran el principal medio
para almacenar y suministrar datos
e instrucciones a una computadora.
Su uso era en una forma de código
binario físico; en una posición espe-
cifica, un agujero representaba un ‘1’
o verdadero y la ausencia de aguje-
ro un ‘0’ o falso. Los programadores
creaban sus programas perforando
tarjetas, una por una, luego las api-
laban en orden correcto.

En tanto que el pensamiento computacional es la habilidad cognitiva para analizar
y resolver problemas de manera lógica y estructurada, la programación es la im-
plementación técnica de una solución mediante un lenguaje de programación. En
otras palabras, el pensamiento computacional es el proceso mental para idear la
solución y la programación es el acto de materializar esa solución en código.

Programación es la acción de traducir un algoritmo a instrucciones que una com-
putadora pueda ejecutar. Su objetivo es crear un software funcional que resuel-
va el problema planteado. Para ello se requiere de conocimientos específicos de
sintaxis, estructuras de datos y entornos de desarrollo. Estas instrucciones, reglas
y sintaxis que permitan a los humanos comunicarse con las computadoras para in-
dicarles qué tareas deben realizar, se conocen como lenguajes de programación.

Entre los programas más populares que los jóvenes usan hoy día están las distintas
redes sociales, el software que usan para comunicarse, los que usan como medio
de entretenimiento para ver películas en Streaming o los videojuegos, aunque
también se puede hablar de plataformas educativas y productivas donde organizar
tareas o aprender algún lenguaje mediante ejercicios interactivos.

Historia de los lenguajes de programación

La programación ha evolucionado junto con la tecnología. En los inicios de la com-
putación, por allá en la década de 1940 y 1950, se comenzó con las tarjetas perfo-
radas y los programas se escribían directamente en lenguaje máquina, que usa y
entiende solo el sistema binario basado en 2 dígitos: sus símbolos son: 0s (ceros) y
1s (unos), físicamente son apagado y encendido.

La combinación de estos dígitos es lo que usa este lenguaje para representar los
valores, por ejemplo el número 1001101, en sistema decimal es el número 77. El
lenguaje máquina no entiende de números decimales y letras directamente, sino
que las interpreta como secuencias de números binarios mediante el sistema AS-
CII. Programar en este lenguaje es un método poco práctico y propenso a errores.

Lenguaje máquina con el texto “Hola mundo”.

3.1 Lenguajes de programación

61PENSAMIENTO COMPUTACIONAL

Progresión 3

		
Conceptos clave

ASCII. (American Estándar Code for
Information Interchange). Sistema de
codificación estándar para caracte-
res que permite a las computadoras
representar texto. Utiliza una com-
binación de 7 u 8 valores (bits) para
representar 128 o 256 caracteres,
respectivamente. Por ejemplo, la pa-
labra ´Hola´ en lenguaje máquina se
escribe como 01001000 01101111
01101100 01100001 y cuyo código
ASCII es 72 111 108 108 97.

Con el tiempo, se buscó hacer la programación más fácil para los humanos, lo que
llevó al surgimiento de los lenguajes de bajo nivel, muy cercanos al hardware de la
computadora, rápidos pero difícil de escribir y mantener; entre ellos está el popular
lenguaje ensamblador, que permitía usar palabras simbólicas, como MOV, ADD,
SUB en lugar de números binarios. Sin embargo, seguían siendo de bajo nivel, muy
cercanos al lenguaje de la computadora y poco intuitivos para las personas.

Transición de lenguaje máquina a instrucciones de lenguaje ensamblador.

La característica principal de estos lenguajes son su alto grado de abstracción, lo
que significa que oculta los detalles de la arquitectura del hardware, permitiendo
a los programadores centrarse en la lógica del problema a resolver en lugar de
detalles de bajo nivel como la gestión de la memoria.

Algunos de los más influyentes fueron: Fortran, Cobol, Basic, C y C++. Actualmen-
te lenguajes como Pythom, Java y JavaScript son mayormente usados por tener
una sintaxis clara permitiendo crear aplicaciones robustas o para el desarrollo en
web, mientras que Basic es fácil de usar y aprender.

Posterior a los lenguajes de alto nivel, se tomó lo mejor de C y se le añadió una
forma de programar llamada Programación Orientada a Objetos (OOP).

Al principio se le llamó C con Clases, pero luego se rebautizó como C++, ofre-
ciendo un balance entre el control de bajo nivel y las abstracciones de alto nivel,
ganándose el termino de lenguaje medio por su facilidad de lenguaje y el poder
que da de manipular la memoria.

62 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Accede a la presentación interactiva
Lenguajes de programación y conoce
más características. Hazlo escanean-
do el Código QR.

Clasificación de los lenguajes

Existen varias formas de clasificar los lenguajes:

Por nivel de abstracción:
l Bajo nivel. Como ensamblador y lenguaje máquina. Si bien son rápidos tam-
bién son difíciles de escribir y no son portables, es decir, un código de ensambla-
dor para el celular no funciona en una computadora personal.
l Alto nivel. Entre ellos Python, Java, JavaScript, C++ y C#. Son más fáciles de
leer y escribir, además son portables.

Por paradigma de programación:
Esta clasificación se refiere a la filosofía de cómo programar.
l Imperativo. En él se le dice a la computadora qué hacer y cómo hacerlo, paso
a paso, por ejemplo la programación estructurada.
l Orientado a objetos. Usado para crear objetos que tienen datos, es decir
atributos; también tienen funciones, métodos.
l Funcional. Se basa en el uso de funciones matemáticas puras.

Por ejecución:
l Compilados. Se escribe el código fuente y luego un programa especial llama-
do compilador lo traduce todo de una vez a lenguaje máquina, creando un archivo
ejecutable, haciendo que la ejecución sea súper rápida.
l Interpretados. En él, un programa llamado intérprete lee el código línea por
línea y lo ejecuta al momento. Es más lento, pero a menudo más flexibles para
hacer pruebas rápidas.

Clasificación de los lenguajes de programación.

Estudiando --
Dedica un tiempo a la lectura de las páginas y observar recursos didácticos co-
rrespondientes a los temas de Programación estructurada en C++: Estructuras
de control. Realizar esta tarea, te facilitará el aprendizaje y realizar las actividades
que el profesor guiará en las siguientes sesiones. Apóyate en alguna estrategia de
lectura que te ayude a mejorar la comprensión lectora.

63PENSAMIENTO COMPUTACIONAL

Progresión 3

		
Conceptos clave

Editor de texto. Herramienta don-
de se escribe el código con colores
para detectar errores fácilmente.

Compilador. Es un programa que
traduce el código fuente de un len-
guaje de programación de alto nivel
a uno de bajo nivel para que la com-
putadora lo entienda directamente.

Depurador. Programa que permi-
te a los desarrolladores identificar
y corregir errores en otro programa
al ejecutarlo de forma controlada,
además de examinar su comporta-
miento.

Recurso digital

Escanea el QR para descargar el ins-
talador de la aplicación Code::Blocks.

Editores de código

El código de programación no puede ser escrito en un procesador de texto común
como la aplicación Microsoft Word, se necesita un editor de texto plano, como el
editor de código, herramienta donde los desarrolladores escriben y organizan los
programas, pues está diseñado para facilitar el desarrollo de software mediante
funciones específicas para programar. Sus funciones más comunes son:

l Resaltado de sintaxis coloreando palabras clave, variables y operadores.
l Autocompletado de código, mientras se escribe sugiere comandos y ayuda
para evitar errores.
l Compilación integrada, permitiendo transformar el código fuente en un
ejecutable.
l Depuración, esto es, que ejecuta el programa paso a paso para encontrar fallos.
l Gestión de proyectos, esto significa que el editor organiza varios archivos lo
que facilita la estructura del proyecto.
l Consola integrada que muestra resultados inmediatos.

Tipos de editores de código

1. Editores básicos con soporte para programación. Sus características son ser
ligeros y útiles para pequeños programas; pero tienen la desventaja de no incluir
un compilador. Entre ellos, están el Notepad++, Sublime Text y Vim.

2. Entornos de Desarrollo Integrados (IDE). Estos editores son más completos
porque incluyen editor, compilador, depurador y herramientas profesionales. Son
ideales para programación estructurada porque simplifican el proceso de codifica-
ción, incluso en la jerga informática se les llama navaja suiza. Ejemplos de este tipo
de editor son Code::Blocks, Dev C++, Visual Studio, Eclipse CDT.

3. Editores de código en línea (Online IDE). Estos permiten programar sin insta-
lar nada, directamente desde el navegador, como el Replit, JDoodle y OnlineGDB.

u Editor de código Code::Blocks

Code::Blocks es un Entorno de Desarrollo Integrado (IDE) muy utilizado para pro-
gramar en los lenguajes C y C++. Su diseño sencillo y funcional lo hace ideal para
estudiantes que se inician en el mundo de la programación, además de ser gratuito
y de código abierto. Es totalmente configurable y es altamente extensible, es decir,
que está basado en un marco de plugins, un componente de software que extiende
o añade funcionalidades a la aplicación principal sin alterar su código base.

Se caracteriza por tener:

1. Instalación sencilla. La descarga, preferiblemente la versión que incluye el com-
pilador MinGW, puede ser del sitio oficial https://www.codeblocks.org/down-
loads/ o bien desde el QR que está al lado. Posterior a la descarga, la instalación
se ejecuta, se acepta la licencia y se sigue instrucciones manteniendo la configu-
ración predeterminada si así se desea, si no, se configura manualmente desde
Settings, donde también puede cambiarse el entorno a español, esto se hace en la
opción Entorno > Ver > Internacionalización.

64 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Observa al video Conociendo el IDE
Code::Blocks en la estructura básica
de un programa en C++. Accede a él
escaneando el Código QR.

2. Interfaz amigable. Presenta una organización clara del entorno, con una ven-
tana para el proyecto, un editor de archivos, una consola de salida y una barra
de herramientas para compilar y ejecutar el programa. Además de ser intuitivo y
facilita adaptarse rápidamente a la sintaxis de C++.

3. Compilador integrado. Permite compilar con un solo clic, generar archivos eje-
cutables y visualizar errores de compilación de forma clara. La versión más reco-
mendada es Code::Blocks con el compilador MinGW por ser compatible con Win-
dows. El IDE proporciona las herramientas de edición, compilación y depuración,
y el compilador traduce el código fuente a código ejecutable.

4. Depurador visual. Una herramienta fundamental para aprender a pensar como
un desarrollador, pues ejecuta el programa línea por línea, muestra valores de
variables en tiempo real permitiendo identificar errores lógicos, además coloca
breakpoints (punto de interrupción), esto es que establece un marcador en una
línea específica del código donde se desea que la ejecución del programa se de-
tenga temporalmente.

5. Resaltado de sintaxis. Colorea palabras reservadas, identificadores, operado-
res y comentarios facilitando la lectura del código y la detención rápida de errores.

6. Plantillas de proyectos. Al iniciar un nuevo proyecto (programa) puede elegirse
hacer con Console Application o Empty Project. Con la primera opción se puede
elegir C++ para que genere automáticamente el archivo main.cpp.

7. Multiplataforma. Este IDE funciona correctamente en diferentes sistemas ope-
rativos, por ejemplo puede ejecutarse en Windows, Linux o en macOS.

Pantalla de inicio del IDE Code::Blocks.

Flujo de Code::Blocks para la resolución sistemática del problema:

65PENSAMIENTO COMPUTACIONAL

Progresión 3

Relaciónalo con...

Code::Blocks en un nuevo proyecto
genera:

Archivos fuente principal (main.cpp)
es donde se escribe el programa.
Archivo de proyecto (.cbp) que
contiene configuración interna del
proyecto como rutas y versión de
compilación, archivos incluidos y pa-
rámetros de depuración.
Carpeta bin, que tiene los binarios
generados, dependiendo del sistema
puede haber bin/debug y bin/reléase.
En ellos estará el archivo ejecutable.
Carpeta obj, (.o), son archivos objeto
creados por el compilador durante la
traducción.
Archivos temporales para uso inter-
no del compilador.
Archivo ejecutable final (.exe) que
se genera mediante el proceso de
compilación y enlazado (linking) rea-
lizado por el compilador.

Ventana para configurar el
 Compilador en Code::Blocks.

Pasos para crear un nuevo proyecto en Code::Blocks

1. Abrir Code::Blocks.

2. Crear un nuevo proyecto desde Archivo > Nuevo > Proyecto > Consola de
aplicación.

Ventana Nuevo proyecto en Code::Blocks.

3. Seleccionar el lenguaje de programación en el que se desea codificar, puede
ser C o C++.

4. Asignar el nombre y ubicación donde se guardará el proyecto. Con esto se ge-
nerará una carpeta con el nombre asignado y dentro el archivo del proyecto con
extensión ‘.cbp’.

5. Configurar el compilador: GNU GCC Compiler o MinGW Compiler (en Windows).

6. Abrir desde el panel lateral de Administración el archivo principal con doble clic
sobre él. La aplicación le asigna el nombre ‘main.cpp’.

7. Escribir o modificar el código en la ventana Editor de texto.

Panel Administración (derecha) y Editor de texto (izquierda) en Code::Blocks.

8. Guardar el archivo.

9. Compilar y ejecutar el programa con la tecla F9 o desde la barra superior de
opciones con el comando Build and run (Construir y ejecutar, en entorno en idioma
español).

10. Verificar errores y corregirlos. Si hay errores, la aplicación mostrará una lista
en la parte inferior con mensajes como expected ‘;’ before ‘}’ token, entonces se
da clic en el mensaje para ir a la línea exacta del error, se corrige y se vuelve a
compilar.

66 PENSAMIENTO COMPUTACIONAL

Progresión 3

Logo de lenguaje C++.

Diagrama del proceso de creación
de un programa o aplicación.

Programación estructurada
En el tipo de lenguaje de programación estructurada, los programas se diseñan de
arriba hacia abajo (top-down) jerárquicamente, usando solo un conjunto restringi-
do de estructuras de control en cada nivel, instrucciones secuenciales, estructuras
selectivas y estructuras repetitivas. Cuando esto se hace de forma adecuada el
programa resulta muy fácil de entender, depurar y modificar.

La programación estructurada es una forma de construir software de manera or-
denada y clara, es como construir con bloques de LEGO, en lugar de tener un
montón de piezas desordenadas. Los programas deben estar dotados de una es-
tructura y escribirse de acuerdo con las siguiente reglas:

l Tener diseño modular.
l Módulos diseñados en modo ascendente.
l Codificar cada módulo utilizando los tres tipos de estructuras:

	 1. Secuencia: ejecutar instrucciones una después de otra, como seguir
	 una receta.

	 2. Selección: tomar decisiones, por ejemplo, si llueve, usa paraguas; si 		
	 no, usa lentes.

	 3. Iteración: repetir tareas, como batir la mezcla de un pastel 100 veces.

Metodología para codificación de un programa

El desarrollo del software requiere atender la gestión, diseño, desarrollo e implan-
tación para lograr su calidad. En la etapa de diseño se lleva a cabo la programación
de computadoras contemplando las actividades de planeación, codificación, prue-
ba y documentación. Para ello se precisa de una metodología que atienda el pro-
ceso de transferencia de las secuencias lógicas de un algoritmo a un determinado
lenguaje de programación, lo que a su vez solicita el cumplimiento de los pasos:
codificación del programa, compilación y ejecución, y verificación y depuración.

1. Codificación de un programa

Es la escritura del algoritmo en un lenguaje de programación desarrollado en las
etapas precedentes. El código puede ser escrito con igual facilidad en un lenguaje
o en otro. Para realizar esta conversión se deben sustituir las palabras reservadas en
español por sus homónimos en inglés y las operaciones e instrucciones indicadas
en lenguaje natural, expresarlas en la sintaxis del lenguaje de programación en uso.

2. Compilación y ejecución

Una vez que el algoritmo mediante un programa editor se codifica en un lenguaje,
se genera un programa fuente y al colocarlo en la memoria de la computadora, es
decir, se compila, se convierte el programa fuente en un archivo de programa. Si
tras la compilación se presentan errores (errores de compilación) en el programa
fuente, es necesario regresar a editar el programa, corregir los errores y compilar
de nuevo. El proceso debe repetirse hasta que no haya errores.

3.2 Estructura básica de un programa en C++

67PENSAMIENTO COMPUTACIONAL

Progresión 3

Relaciónalo con...

Los videojuegos AAA son títulos de
alto presupuesto, desarrollados por
grandes editoriales en lenguaje C++;
se caracterizan por sus altos costes
de producción y marketing y el gran
número de personas que trabajan en
ellos. Por ejemplo Grand Theft Auto
V, Elder Ring, Fortnite y Call of Cuty:
Warzone.

La compilación sin errores da como resultado el programa objeto, este archivo
aún no es ejecutable; para ello se pide al Sistema Operativo que lo enlace con las
bibliotecas del compilador. Este último proceso de montaje produce el programa
ejecutable, que “corre” con solo teclear su nombre desde el sistema operativo.

3. Verificación e implementación

Es el proceso de ejecución del programa con distintos datos de entrada, que de-
terminarán si el programa tiene errores (bugs). Para ello se debe hacer pruebas de
datos con valores normales y extremos de entrada que comprueben los límites del
programa y valores de entrada que comprueben aspectos especiales del programa.

Lenguaje C++

C++ es un lenguaje de alto nivel increíblemente poderoso y rápido que se usa para
todo: sistemas operativos, como Windows o macOS, para videojuegos AAA, aplica-
ciones de escritorio, e incluso en la robótica y la exploración espacial.

Este lenguaje combina la programación estructurada y la orientada a objetos, con-
virtiéndolo en uno de los lenguajes más versátiles y utilizados en la industria. Por su
capacidad para controlar eficientemente recursos de la computadora, sigue siendo
uno de los lenguajes preferidos en videojuegos, software científico, control de hard-
ware, simulaciones y sistemas operativos.

Sintaxis y elementos básicos

Así como un texto formal tiene introducción, desarrollo y conclusión, un programa
está formado por partes definidas que permiten que el compilador interprete y eje-
cute las instrucciones del programador. En esta secuencia se describe el lenguaje
C++, uno de los más utilizados en la enseñanza de la programación estructurada y
base de muchos otros lenguajes modernos. Un programa básico en C++ luce así:

 #include <iostream>
 using namespace std;

 int main() {
 cout << “Hola, mundo!” << endl;
 return 0;
 }

u Sintaxis. Es el conjunto de reglas que indican cómo deben escribirse las instruc-
ciones para que el lenguajes las entienda. Por ejemplo, en C++, es estricta la regla
de que si un carácter, símbolo o palabra clave está mal escrito o colocado en un
sitio, el programa no compilará.

u Directivas de preprocesador (#include). Indica al compilador que se incluirá
una biblioteca; estas funcionan como caja de herramientas que agregan funciones
ya programadas listas para usarse. El ejemplo se usa el iostream, pero hay otras
más completas:

68 PENSAMIENTO COMPUTACIONAL

Progresión 3

Relaciónalo con...

El manipulador endl inserta un salto
de línea en el código. Y este: >> es
el operador de extracción, es decir,
extrae lo que el usuario teclea y lo
guarda en una variable.

¿Sabías qué…?

Cuando se usarán datos de tipo ca-
rácter (letra, número o símbolo) se
usan comillas simples: ‘ ’. Para guar-
dar datos de cadena de texto se usan
comillas dobles: “ “, también debe
incluirse la librería #include <string>.

u Espacio de nombres (namespace). C++ es un lenguaje muy grande, lleno de
funciones y objetos; para evitar que sus nombres choquen entre sí, se organizan
en namespaces. También permite usarlos sin reescribirlos en cada llamado. En el
ejemplo se utiliza: using namespace std; que contiene las herramientas esenciales:
	

	 l cout → salida de datos
	 l cin → entrada de datos
	 l string → manejo de textos

u Función principal. Todo programa en C++ debe tener una función llamada
main() pues es el punto de inicio donde el programa comienza a ejecutarse. Si-
guiendo con el ejemplo:
	

	 l int → indica que la función regresa un valor entero al sistema operativo.
	 l return 0; → significa que el programa terminó correctamente.
	 l { } → las llaves delimitan dónde empiezan y terminan las instrucciones
	 del programa.

u Instrucciones y declaraciones de sentencias. Dentro del main() van todas
las instrucciones a ejecutar. Cada línea termina con punto y coma (;) para indicar
el final de una instrucción, si se olvida, el programa marcará error. En el ejemplo
aparece: cout << “Bienvenido a C++” << endl;

Estructura de programa en C++.

Variables y tipo de datos

El espacio en memoria donde se almacena un dato en el programa son las varia-
bles. Pero para usarlas, primero se deben declarar, esto significa indicar su nom-
bre y qué tipo de datos guardará.
	 u Sintaxis general de la declaración de variable es:
		 l Tipo nombre;
		 l Tipo nombre = valor;

69PENSAMIENTO COMPUTACIONAL

Progresión 3

	 u Reglas para nombrarlas:
		 l No puede iniciar con número.
		 l No deben incluir espacios.
		 l Deben evitar acentos y caracteres espaciales.
		 l No deben llamarse igual que las palabras clave del lenguaje.
		 l Correcto → edadAlumnos , promedio_final , total2
		 l Incorrecto → 2edad , promedio final , c++ , if

Tipos de datos más comunes en C++

Tipo Descripción Ejemplo de declaración

int Número enteros int edad = 17;

float
Números con decimales

(precisión simple)
float pi = 3.1416;

double Decimales de mayor precisión double gravedad = 9.81;

char Un solo carácter char letra = ‘A’;

bool Verdadero o falso bool activo = true;

string Cadenas de texto string nombre = “Claudia”;

Entrada y salida de datos

Dos procesos fundamentales para la comunicación entre un sistema de informa-
ción y el mundo exterior, permitiendo que el usuario interactúe con el programa y
vea el resultado de las operaciones son la entrada (input) que es la información que
el programa recibe y la salida (output) es decir, el resultado que el programa envía
después del procesamiento. En lenguaje C++ se usa la sintaxis:
	 l cout →Objeto de salida de consola. Por ejemplo:
	 cout << “Edad: “ << edad << endl;
	 l cin →Objeto de entrada de consola, por ejemplo:
	 cin >> edad;

70 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Escanea el código QR para consultar
una infografía donde se explica la je-
rarquía de operaciones en C++.

Operadores en C++

Los operadores permiten realizar cálculos, comparaciones y decisiones dentro de
un programa. Son fundamentales para las estructuras control. Hay cuatro tipos de
operadores:

1. Operadores aritméticos.
Permiten hacer los cálculos matemáticos básicos: suma (+), resta (-), multiplicación
(*), división (/), modulo o residuo (%).

2. Operadores relacionales.
Se usan para comprar valores, su resultado siempre es true o false: igual que (==),
diferente de (!=), menor que (<), mayor que (>), menor o igual (<=), (>=) mayor o
igual.

3. Operadores lógicos.
Permite unir comparaciones: dos datos verdaderos (AND - &&), al menos uno ver-
dadero (OR – ||) invierte el valor de verdad (NOT - !).

4. Operadores de asignación.
Hay dos formas: asignar =; operar y asignar +=, -=, *=, /=.

 #include <iostream>
 using namespace std;

 int main() {
 int edad;
 cout << “Ingresa tu edad: ”;
 cin >> edad;

 if (edad >= 18) {
 cout << “Eres mayor de edad.” << endl;
 } else {
 cout << “Eres menor de edad.” << endl;
 }
 return 0;
 }

71PENSAMIENTO COMPUTACIONAL

Progresión 3

Recurso digital

Escanea el QR para descargar el ar-
chivo con Ejemplos de Estructuras
de control. En él se encuentran los
problemas y algoritmos en PSeInt de
todos los ejemplos de la progresión.

Las estructuras de control como su nombre indica controlan el flujo de ejecución
de un programa y aquí es donde la programación se vuelve poderosa, con las
estructuras de control selectivas y repetitivas que permiten que un programa no
sea una simple secuencia lineal de instrucciones, sino que tome decisiones y repita
acciones según las condiciones establecidas. Aunque, las estructuras secuenciales
son fundamentales por ser la base de cualquier algoritmo.

Estructuras secuenciales

Este tipo de estructuras permiten la ejecución de instrucciones en un orden especi-
fico y lógico, su principal característica radica en que los hacen los programas más
fáciles de entender, depurar y mantener por ejecutar una instrucción tras otra,
en el orden en que aparecen en el código sin saltos ni bifurcaciones. Aunque en
programas complejos se combinan con estructuras condicionales y bucles.

La secuencia es crucial para tareas simples y para definir el flujo básico de acción
en cualquier programa.

Algoritmo Código en C++

 Inicio
 Instrucción(es)
 Fin

 int main() {
 instrucción(es);
 return 0;
 }

El siguiente código en lenguaje C++ es un ejemplo de estructuras secuenciales,
su problema y algoritmo en PSeInt se encuentran en el recurso digital de al lado:

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 float mouse=0,audifonos=0,tapete=0,iva=0,total=0;

 cout << “Precio del mouse: ”;
 cin >> mouse;
 cout << “Precio de los audifonos: ”;
 cin >> audifonos;
 cout << “Precio del tapete: ”;
 cin >> tapete;

 total = (mouse + audifonos + tapete)*1.16;
 cout << “Total a pagar: ” << fixed <<
 setprecision(2) << total << endl;

 return 0;
 }

3.3 Estructuras de control

72 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Observa el video Estructura condi-
cional If en C++ para profundizar en
la explicación de tu profesor. Accede
a él escaneando el Código QR.

Para saber más…

Observa el video explicativo Estruc-
tura condicional If else en C++ y re-
fuerza el tema visto en clase. Accede
a él escaneando el Código QR.

Estructuras condicionales

Como se vio en la secuencia de PSeInt, las estructuras de control condicionales o
de selección se usan para que el programa elija un camino. El flujo puede ser de
tres formas: if, if-else, if-else-if.

1. Condicionales simples - Si (if). Son estructuras selectivas simples que ejecutan
un bloque de código solo si la condición es verdadera.

Algoritmo Código en C++

 Si (condición(es)) entonces
 Instrucción(es)
 Fin del si

 if(condición(es)){
 instrucción(es);
 }

Ejemplo de selectiva simple. Tanto como el problema como el algoritmo en PSeInt
están en el recurso digital de la página 71.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 int edad = 0;

 cout << “¿Cuál es tu edad? “;
 cin >> edad;
 if (edad > 15){
 cout << “Acceso permitido” << endl;
 }
 return 0;

 }

2. Condicionales dobles - Si… si no… (if-else). Llamadas también selectivas dobles.
Ejecuta un bloque si la condición es verdadera y un bloque diferente si es falsa.

Algoritmo Código en C++

 Si (condición(es)) entonces
 Instrucción(es)
 De lo contrario Si (condición(es))
 entonces
 Instrucción(es)
 Fin del si

 if(condición(es)){
 instrucción(es);
 }else{
 instrucción(es);
 }

Ejemplo de selectiva doble. El problema y el algoritmo en PSeInt se encuentran en
el recurso digital de la página 71.

73PENSAMIENTO COMPUTACIONAL

Progresión 3

¿Sabías qué…?

Otro elemento que puede agregar-
se en un programa son comentarios
que el desarrollador coloca y que el
compilador ignora. Hay dos formas
de agregar la nota:
1. // esto es una nota de una línea.
2. /*instrucción que lee dato*/.

Para saber más…

Observa el video Estructura condi-
cional If else if en C++ para ampliar
la explicación de tu profesor. Accede
a él escaneando el Código QR.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 float precio = 0, total = 0;
 char credencial = ‘ ‘;
 cout << “Cuál es el precio del libro? “;
 cin >> precio;
 cout << “¿Tienes credencial de estudiante? (S=si,
 N=no): “;
 cin >> credencial;
 if (credencial == ‘s’ || credencial == ‘S’) {
 total = precio * 0.9; //Aplicar 10% de desc.
 } else {
 total = precio;
 }
 cout << “Total a pagar: “ << fixed <<
 setprecision(2) << total << endl;
 return 0;
 }

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje de las estructuras condicionales simple y doble, realiza
en clase con la guía de tu profesor la siguiente actividad.

1. Retoma el algoritmo que diseñaste en PSeInt del problema de estructuras sim-
ple y doble en la actividad Ejercitando mis conocimientos pág. 41.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E01 y comparte con tu profesor
por el medio que indique.

3. Condicionales dobles anidadas - (if-else-if). Las selectivas dobles anidadas se
usan para encadenar múltiples condiciones, es como una escalera. El programa
revisa la primera condición; si es falsa, revisa la segunda, y así sucesivamente. En
estas estructuras uno de los dos bloques se ejecutará sí o sí.

Algoritmo Código en C++

 Si (condición(es)) entonces
 Instrucción(es)
 De lo contrario Si (condición(es))
 entonces
 Instrucción(es)
 De lo contrario
 Instrucción(es)
 Fin del Si

 if(condición(es)){
 instrucción(es);
 }else if(condición(es)){
 instrucción(es);
 }else{
 instrucción(es);
 }

74 PENSAMIENTO COMPUTACIONAL

Progresión 3

Ejemplo de selectiva doble anidada. Su problema y su algoritmo en PSeInt se en-
cuentran en el recurso digital de la página 71.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 int nivel = 0;
 char reto = ‘ ‘;
 cout << “Cuál es el nivel de jugador? ”;
 cin >> nivel;
 cout << “¿Hace el reto diario? (S=si, N=no): ”;
 cin >> reto;
 if (nivel >= 20){
 if (reto == ‘s’ || reto == ‘S’){
 cout << “Skin Épica” << endl;
 } else {
 cout << “Skin Rara” << endl;
 }
 } else {
 if (reto == ‘s’ || reto == ‘S’){
 cout << “Caja Ítems” << endl;
 } else {
 cout << “Monedas x100” << endl;
 }
 } return 0;
 }

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje de las estructuras selectivas Anidadas, realiza en clase
con la guía de tu profesor la siguiente actividad.

1. Retoma el algoritmo que diseñaste en PSeInt del problema de estructuras con-
dicionales Anidadas en la actividad Ejercitando mis conocimientos pág. 44.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E02 y comparte con tu profesor
por el medio que indique.

75PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Accede y observa el video Estructura
condicional Switch-case en C++ que
profundiza en la explicación del tema.
Hazlo escaneando el Código QR.

3. Condicional Selector (switch-case). Es una alternativa al if-else-if, pero es más
limpia cuando se quiere comparar el valor de una sola variable contra múltiples
casos exactos. En esta estructura el ‘break;’ es crucial, es el else del switch, se
ejecuta si ningún caso coindice, pero si se olvida, el programa ejecutará ese caso y
todos los que le siguen será un llamado fall-through.

Algoritmo Código en C++

 En caso de (op)
 Caso op1:
 Instrucción(es)
 Interrumpir
 Caso op2:
 Instrucción(es)
 interrumpir
 Caso defecto:
 Instrucción(es)
 interrumpir
 Fin del caso

 switch (op){
 case 1:
 instrucción(es);
 break;
 case 2:
 instrucción(es);
 break;
 default:
 instrucción(es);
 }

Ejemplo de selectiva simple, su problema y algoritmo en PSeInt se encuentran en
el recurso digital de la página 71.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 int reaccion = 0;
 cout << “¿Qué reacción deseas pulsar? (1-5): ”;
 cin >> reaccion;
 switch (reaccion) {
 case 1:
 cout << “Me gusta” << endl;
 break;
 case 2:
 cout << “Me encanta” << endl;
 break;
 case 3:
 cout << “Me divierte ” << endl;
 break;
 case 4:
 cout << “Me asombra ” << endl;
 break;
 case 5:
 cout << “Me entristece ” << endl;
 break;
 default:
 cout << “Reacción no válida” << endl;
 } return 0;
 }

76 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Observa el video Estructura repetiti-
va For en C++ y conoce más de lo
explicado en clase. Accede a él es-
caneando el Código QR.

Estructuras repetitivas

Las también conocidas como bucle o ciclo, es una construcción que ejecuta un con-
junto de instrucciones varias veces hasta que se cumple con una condición especí-
fica. Esto ayuda a automatizar tareas que se repiten, reduciendo la necesidad de
escribir el mismo código una y otra vez.

Los ciclos más comunes son while, for y do-while.

1. Repetitiva Para (for). El bucle perfecto cuando se sabe exactamente cuántas
veces se quiere repetir algo, a esto se le llama controlado por contador. Su sintaxis
tiene 3 partes:

l Inicialización: se ejecuta una sola vez al empezar. Aquí se crea el contador, int i = 0

l Condición: se revisa antes de cada repetición. Si es true, el bucle se ejecuta, si
es false, el bucle termina.

l Incremento: se ejecuta después de cada repetición. Aquí i++ suma 1 a i.

Algoritmo Código en C++

 Para(inicio;condición(es);comporta-
 miento)
 Instrucción(es) 1
 Instrucción(es) n
 Fin Para

 for(inicio;condición(es);comporta-
 miento){
 instrucción(es) 1;
 instrucción(es) n;
 }

Ejemplo de selectiva simple. Tanto el problema como el algoritmo en PSeInt se en-
cuentran en el recurso digital de la página 71.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 int dias=0,i=0;
 float likes=0,promedio=0;

 cout << “¿Cuántos días deseas evaluar? ”;
 cin >> dias;
 for (i=1 ; i <= dias ; i++){
 cout << “Porcentaje de likes día ” << i << “: ”;
 cin >> likes;
 promedio += likes;
 }
 promedio = promedio / dias;
 cout << “Promedio general de likes: ” << fixed <<
 setprecision(2) << promedio << endl;
 return 0;
 }

77PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Observa el video Estructura repetiti-
va While en C++ y conoce más de
lo explicado en clase. Accede a él
escaneando el Código QR.

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje de las estructuras repetitiva Para, realiza en clase con
la guía de tu profesor la siguiente actividad.

1. Retoma el algoritmo que diseñaste en PSeInt del problema de estructura repe-
titiva Para, de la actividad Ejercitando mis conocimientos pág. 52.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E03 y comparte con tu profesor
por el medio que indique.

2. Repetitiva Mientras (while). Esta estructura sirve cuando no se sabe cuántas
veces se repetirá, pero se sabe la condición que debe cumplirse para seguir eje-
cutándose. Es un bucle controlado por condición, es decir, que revisa la condición
antes de entrar en él.

Algoritmo Código en C++

 Mientras (condición(es)) Haz
 Instrucción(es)
 Fin Mientras

 while(condición(es)){
 instrucción(es);
 }

Ejemplo de estructura repetitiva mientras. El problema y el algoritmo en PSeInt se
encuentran en el recurso digital de la página 71.

#include <bits/stdc++.h>
using namespace std;

int main() {
 int dias=1,meta=0,pasosDia=0,acumulado=0;

 cout << “¿Cuál es tu meta de pasos? “;
 cin >> meta;

 while (acumulado < meta){
 cout << “Pasos dia “ << dias << “: “;;
 cin >> pasosDia;
 acumulado += pasosDia;
 dias++;
 }

 cout << “¡Meta alcanzada en “ << dias-1 << “ días!” << endl;
 return 0;
}

78 PENSAMIENTO COMPUTACIONAL

Progresión 3

Para saber más…

Accede y observa el video Estructura
repetitiva Do while en C++ y conoce
más de su funcionamiento. Hazlo es-
caneando el Código QR.

3. Repetitiva Haz…Mientras (do-while). Esta estructura iterativa es casi igual al
while, pero con una diferencia clave, la condición se revisa al final del bucle. Esto
garantiza que el bloque de código se ejecutará al menos una vez.

Algoritmo Código en C++

 Haz
 Instrucción(es)
 Mientras(condición(es))

 do{
 instrucción(es);
 }while(condición(es));

Ejemplo de estructura repetitiva Haz mientras. El problema y el algoritmo en PSeInt
se encuentran en el recurso de la página 71.

 #include <bits/stdc++.h>
 using namespace std;

 int main() {
 int NIP=0,NIP2=0;
 string nombre=””;

 cout << “¿Cuál es tu nombre de usuario? ”;
 cin >> nombre;
 cout << “Introduce el NIP secreto: ”;
 cin >> NIP;
 cout << “Accede a UltraApp” << endl;

 do{
 cout << “NIP: ”;
 cin >> NIP2;
 }while (NIP != NIP2);

 cout << “Acceso concedido. Bienvenid@ ” << nombre
 << “ a UltraApp”<< endl;
 return 0;

 }

Ejercitando mis conocimientos --
Para reforzar tu aprendizaje de las estructuras repetitiva Haz mientras, realiza en
clase con la guía de tu profesor la siguiente actividad.

1. Retoma el algoritmo que diseñaste en PSeInt del problema de estructura repeti-
tiva Haz mientras, de la actividad Ejercitando mis conocimientos pág. 48.

2. Codifica el algoritmo en C++ en el editor Code::Blocks.

3. Comprime en una carpeta todos los archivos generados y guarda con el nombre
compuesto por tus iniciales seguidas de _PC_P3_E04 y comparte con tu profesor
por el medio que indique.

79PENSAMIENTO COMPUTACIONAL

Progresión 3

Recurso digital

Escanea el QR para descargar el ar-
chivo con las indicaciones para reali-
zar la actividad.

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en la Progresión 3, realiza la
actividad interactiva, ingresa a ella
escaneando el código QR.

Concretando mis conocimientos
Con el objetivo de aplicar lo aprendido a lo largo de la progresión y demostrar
cómo codificar instrucciones en lenguaje C++ utilizando condicionales y bucles,
de manera colaborativa resuelve la siguiente actividad:

1. Reúnete con tu equipo de trabajo.

2. Descarguen el archivo de indicaciones mediante el QR de al lado.
	 a. Apliquen las fases del pensamiento computacional al problema plan-
	 teado y organícenlas en un documento de Word. Redacten de manera
	 clara cada paso que siguieron para darle solución.
	 b. Codifiquen el algoritmo en lenguaje C++ en el editor Code::Blocks.
	 c. Compilen y ejecuten el programa.
	 d. Verifiquen errores y en el caso de haberlos, corríjanlos.

3. Guarden en una misma carpeta los archivos:
	 a. Documento de las fases del pensamiento computacional. Agreguen al
	 final el nombre de los integrantes del equipo.
	 b. Archivos de código y ejecutable generados.

4. Compriman la carpeta utilizando como nombre sus iniciales separadas por guion
medio y seguidas del nombre _PC1_P3_ CMC y compartan con su profesor por el
medio que indique.

Instrumento de evaluación
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluará tu reporte escrito.

Indicador Si No Puntos

Aplican correctamente las fases del
pensamiento computacional

1

Utiliza las librerías adecuadas 1

Declara correctamente cada variable de
acuerdo con el tipo de datos

1

Codifican las instrucciones en C++ 2

Seleccionaron las estructuras de control
adecuadas para resolver de manera óptima el
problema

2

Utilizan los operadores aritméticos, lógicos y
de relación de acuerdo con el algoritmo

1

No presenta errores de compilación 1

Resuelve de manera óptima el problema
mediante lenguaje C++

1

80 PENSAMIENTO COMPUTACIONAL

Codifica en C++ arreglos unidimensionales para almacenar, procesar y manipular conjunto de datos, determinando
la ejecución de instrucciones de manera organizada y eficiente en la resolución de problemas.

Tiempo estimado: 6 horas

Tus metas serán:
l Identificar la utilidad de los arreglos unidimensionales en la resolución de problemas que requieren manejar
 múltiples valores del mismo tipos de dato.

l Representar soluciones a problemas cotidianos y académicos mediante el diseño de algoritmos que emplean
 arreglos unidimensionales.

l Codificar y ejecutar programas en C++ que utilizan arreglos unidimensionales para almacenar, recorrer y procesar
 datos (suma, promedio, máximo, mínimo, búsqueda lineal y ordenamiento).

Programación
estructurada en C++Pr

og
re

si
ón

4

Recuperando lo que sabemos

Imagine que eres parte del equipo de desarrolladores de un nuevo videojuego llamada “Pixel Quest: data Run”. El sistema
del juego sufrió una falla: los códigos de puntuación de los jugadores se perdieron, pero quedaron fragmentados dispersos
que tú deberás reconstruir utilizando tus conocimientos de programación.

El sistema logró guardar el puntaje de 5 jugadores en variables separadas que harías para resolver lo siguiente:

1. ¿Cómo podrías calcular el promedio de los puntajes usando solo variables y operaciones básicas?

2. ¿Qué estructura repetitiva podrías usar para encontrar el puntaje más alto?

3. Si hubiera 100 jugadores, ¿qué problema tendrías al usar una variable para cada uno?

4. ¿Qué ventajas tendrías si todos estos valores estuvieran dentro de una sola estructura de datos?

81PENSAMIENTO COMPUTACIONAL

Progresión 4

Reactivando mis conocimientos

Cada vez que guardas objetos en un lugar específico, decides dónde colocarlos o acomodas algo siguiendo un orden, estás
usando la misma lógica básica de los arreglos unidimensionales: una fila de elementos donde cada cosa ocupa una posición.

Imagina este escenario:

Al llegar a tu habitación, vacías tu mochila y colocas lo que traes en una repisa con compartimentos colocados en fila: libros,
cuadernos, plumas, audífonos, llaves, etc. Cada objeto queda en un espacio diferente, uno junto al otro. Tu objetivo es tener
tus cosas acomodadas de forma que puedas encontrarlas fácilmente cuando las necesites.

Para lograrlo, necesitas pensar en un procedimiento paso a paso: cómo decides qué espacio ocupará cada objeto, cómo
buscas algo cuando lo necesitas y cómo reacomodas todo si quieres dejarlo ordenado.

1. En tu cuaderno o documento digital, escribe los pasos que seguirías para acomodar tus objetos en una repisa de una sola
fila. Es decir, como decides en que orden pondrás los objetos, como reacomodas todos los objetos si quieres que queden
ordenados por tamaño, importancia o frecuencia de uso.

2. Identifica los elementos del problema:
	 l Datos de entrada: ¿Qué cosas tienes que acomodar? (libros, llaves, audífonos, lápices, etc.), ¿Traes nuevos
	 objetos que debas colocar?
	 l Proceso: ¿Qué reglas sigues para colocarlos?, ¿Los acomodas del más grande al más pequeño?, ¿Pones primero
	 lo que usas más seguido?, ¿Buscas posición por posición cuando buscas un objeto?
	 l Salida: ¿Cómo queda tu repisa al final? . Una fila clara y ordenada donde cada cosa tiene una posición conocida
	 y puedes acceder rápido a cualquier objeto.

3. Reflexiona y responde en tus notas:
	 l ¿Qué parte de tu procedimiento crees que un programa podría automatizar?
	 l ¿Cómo te ayudaría usar un entorno de desarrollo para simular tu “repisa” antes de programarla?
	 l ¿Qué ventajas tendría poder observar cómo se ejecutan tus pasos uno por uno en una simulación?

Comparte en clase tus pasos y reflexiones con tus compañeros y el profesor. Analicen juntos cuál de los procedimientos
fue más claro, ordenado y eficiente, y comenten cómo ese mismo proceso podría transformarse en un algoritmo que use
arreglos unidimensionales.

82 PENSAMIENTO COMPUTACIONAL

Progresión 4

Para saber más…

Escanea el código QR y observa el
video Primer acercamiento a estruc-
turas de datos.

¿Sabías qué…?

Una estructura de datos no solo al-
macena información, sino que tam-
bién define cómo se accede, orga-
niza y modifica.

Por ejemplo, una pila (stack) sigue
el principio LIFO (Last In, First Out),
ideal para tareas como deshacer ac-
ciones en editores.

Las estructuras de datos constituyen un componente esencial en el ámbito de la
informática y la programación, ya que permiten organizar, almacenar y gestionar la
información de forma eficiente.

En términos generales, se entiende por estructura de datos una manera de re-
copilar datos y de definir relaciones entre ellos, así como los procedimientos para
operar sobre esos datos.

Las estructuras de datos comprenden diversos tipos, entre los que se encuentran
los arreglos (arrays), las listas enlazadas (linked lists), las pilas (stacks), las colas
(queues), los árboles (trees), los grafos (graphs), las tablas hash (hash tables) y los
vectores, entendidos como estructuras dinámicas.

Representación gráfica de estructuras de datos

Cada estructura de datos se adapta a determinados tipos de problemas en los
que es necesario almacenar elementos, acceder a ellos, insertarlos, borrarlos o
recorrerlos de forma eficiente.

Las estructuras de datos se emplean con el objetivo principal de organizar los
datos contenidos dentro de la memoria de la computadora. Así, la experiencia
con estructuras de datos comienza desde el momento que en los programas usan
variables de tipos primitivos (char, short, int, float, etc).

El correcto uso de una estructura de datos adecuada contribuye a optimizar el
rendimiento de programas, tanto en términos de tiempo (por ejemplo, tiempos de
búsqueda, acceso o inserción) como de espacio (uso de memoria).

Por ejemplo, un arreglo permite acceso directo (aleatorio) a sus elementos con
complejidad constante, lo cual lo hace útil cuando se conoce de antemano el nú-
mero de elementos y se pretende un acceso rápido. Por tanto, es habitual que, an-
tes de diseñar un algoritmo, se seleccione la estructura de datos más conveniente
para la operación que se desea llevar a cabo.

4.1 Estructuras de datos

83PENSAMIENTO COMPUTACIONAL

Progresión 4

Para saber más…

Escanea el código QR y observa el
video Arreglos unidimensionales en
C++.

¿Sabías qué…?

Las colas (queues) son estructuras de
datos que siguen el principio FIFO
(First In, First Out).

Se usan en sistemas como la gestión
de procesos en sistemas operativos
o en la impresión de documentos.

Arreglos unidimensionales

En programación, un arreglo unidimensional, también conocido como vector o arre-
glos, es una estructura de datos que permite almacenar múltiples elementos del
mismo tipo en ubicaciones contiguas de memoria. Esta característica facilita el ac-
ceso rápido a cualquier elemento mediante su índice, lo que permite operaciones
eficientes como lectura, escritura y recorrido.

En lenguajes como C++, los arreglos son una herramienta fundamental para manejar
grandes cantidades de datos. Son especialmente útiles cuando se necesita almace-
nar múltiples valores en una sola variable, como números, cadenas de texto o incluso
tipos de datos más complejos. Una de las principales ventajas de los arreglos es que
permiten organizar y acceder a la información de forma ordenada.

Por ejemplo, si se tiene la necesidad de crear un programa para registrar las califi-
caciones obtenidas por los estudiantes en un examen. Si se usaran variables indivi-
duales para cada alumno, el programa se volvería poco práctico, especialmente si el
grupo es numeroso, ya que habría que declarar una variable para cada calificación.
En cambio, utilizando un arreglo unidimensional, se pueden almacenar todas las
calificaciones de manera más ordenada y eficiente, ya que cada posición del arreglo
representaría la calificación de un estudiante diferente. De esta forma, el uso de
arreglos facilita el manejo, consulta y procesamiento de múltiples datos del mismo
tipo sin necesidad de declarar una variable por cada valor.

En C++, los arreglos tienen una limitación importante: su tamaño debe definirse al
momento de la declaración. Esto significa que el tamaño será fijo durante la ejecu-
ción del programa aun y cuando no se necesiten todas las casillas de este. Existen
otras estructuras de datos que si permiten que su tamaño sea aumentado o dismi-
nuido de manera dinámica según los elementos que se ingresen o se eliminen de
ellos como, por ejemplo: colas, pilas, listas enlazadas, árboles, grados, etc.

u Declaración
En C++ la sintaxis para declarar un arreglo unidimensional es el siguiente:

 tipo_de_dato nombre_identificador [tamaño];

Interpretación:
l tipo_de_dato. Indica el tipo de dato que almacenará el arreglo. Puede ser int
para números enteros, float para números decimales, char para caracteres, o incluso
string para cadenas de texto.

l nombre_identificador. Es el nombre que tendrá el arreglo. Debe seguir las mis-
mas reglas que las variables: comenzar con una letra o guion bajo, no usar espacios
ni caracteres especiales, no ser una palabra reservada, y ser descriptivo.

Estudiando --
Dedica un tiempo a la lectura de las páginas correspondientes a los temas de
Estructuras de datos. Realizar esta tarea, te facilitará el aprendizaje y realizar las
actividades que el profesor guiará en las siguientes sesiones. Apóyate en alguna
estrategia de lectura que te ayude a mejorar la comprensión lectora.

84 PENSAMIENTO COMPUTACIONAL

Progresión 4

¿Sabías qué…?

Tamaño Fijo en arreglos.
En muchos lenguajes de programa-
ción de tipado estático (como C++ o
Java), una vez que declaras un arre-
glo, su tamaño es fijo y no se puede
cambiar dinámicamente durante la
ejecución del programa.

Si necesitas más espacio, debes
crear un arreglo completamente
nuevo y copiar los datos.
.

Conceptos clave

Indexación. Proceso de acceder o
modificar elementos individuales
dentro de un arreglo (también llama-
do array) mediante un número índice
que identifica su posición.

l [tamaño]. Entre corchetes se especifica el número de elementos que contendrá
el arreglo. Este valor debe ser un número entero positivo y es obligatorio al declarar
arreglos estáticos.

Veamos un ejemplo de declaración de un arreglo.

Representación de la sintaxis de un arreglo unidimensional.

Interpretación:

l float. Indica el tipo de dato que almacenará el arreglo, en este caso números
decimales.

l grupo. Es el nombre del arreglo, que nos permitirá identificarlo y acceder a sus
elementos.

l [10]. Representa el tamaño del arreglo, es decir, la cantidad de elementos que
puede almacenar (en este caso, 10 valores de tipo float).

Al declarar un arreglo en C++, el programador está reservando un bloque de me-
moria contigua en la computadora. Este espacio se divide en posiciones, cada una
destinada a almacenar un valor del tipo de dato especificado en la declaración.

Representación gráfica del arreglo en memoria.

En el lenguaje C++, los arreglos inician su indexación en 0 por razones relacionadas
con la forma en que se calcula la posición de cada elemento en memoria. Es decir,
el primer elemento estará en el índice 0 y el último será en el índice n-1. Donde n es
el tamaño del arreglo.

Esta estructura permite realizar distintas operaciones, como:

	 l Acceder a un elemento específico mediante su índice.

	 l Modificar el valor almacenado en una posición.

	 l Recorrer el arreglo para aplicar cálculos o mostrar datos.

Para ilustrar de manera más precisa el funcionamiento de los arreglos y su aplicación
en contextos de la vida cotidiana, puede considerarse el siguiente ejemplo: supón-
gase que una persona acude a un gimnasio que dispone de diez casilleros. En este
caso, el primer casillero no se identifica con el número 1, sino con el 0, dado que
dicho número representa la distancia desde el punto de inicio. Así, el casillero 0 se
encuentra inmediatamente en la entrada (sin desplazamiento alguno), el casillero 1
está ubicado a un paso de distancia, el casillero 2 a dos pasos, y así sucesivamente.
De este modo, el índice refleja el número de posiciones que es necesario avanzar
desde el inicio para acceder al elemento correspondiente.

85PENSAMIENTO COMPUTACIONAL

Progresión 4

¿Sabías qué…?

Acceso Directo.
La principal ventaja de un arreglo
unidimensional es su capacidad de
acceso directo (o aleatorio).

Esto significa que puedes acceder
a cualquier elemento de la lista (por
ejemplo, al elemento en la posición
50) en el mismo tiempo que tardarías
en acceder al primer elemento, sin
necesidad de recorrer los anteriores.

u Inserción de datos
Cuando el arreglo ya está declarado, es posible asignar valores a cada posición. Es-
tos valores deben coincidir con el tipo de dato definido en la declaración del arreglo.

Por ejemplo, si el arreglo fue declarado como int, únicamente puede almacenar
números enteros; intentar guardar cadenas de texto en un arreglo de tipo numérico
sería incorrecto y generaría errores.

La asignación de valores puede realizarse de varias maneras:

Representación gráfica del arreglo numeros en memoria por asignación individual.

2. Inicialización directa: se asignan los valores al momento de declarar el arreglo.

 int numeros[5] = {10, 20, 30, 40, 50};

Representación gráfica del arreglo numeros en memoria por inicialización directa.

3. Lectura mediante entrada de usuario: es una de las formas más comunes para
llenar un arreglo con datos, solicitando al usuario del programa que introduzca
los valores desde el teclado usando un ciclo, el más indicado para hacerlo es la
estructura for:

 int calificaciones[5];
 for (int i = 0 ; i < 5; i++) {
 cout << “Ingrese la calificación ” << i +1 << “: ”;
 	 cin >> calificaciones[i];
 }

4. Inicialización implícita: en el lenguaje C++, también es posible que la declara-
ción de arreglos este acompañada de una lista de valores escritos entre llaves, sin
indicar explícitamente el tamaño del arreglo. Esta forma de declaración también es
correcta y se denomina inicialización implícita.

int numeros[] = {5, 10, 15, 20, 25};

int numeros[5];
numeros[0] = 10;
numeros[1] = 20;

1. Asignación individual: se indica el índice
exacto donde se almacena el dato.

86 PENSAMIENTO COMPUTACIONAL

Progresión 4

¿Sabías qué…?

Si se intenta acceder a una posición
que no existe en el arreglo (por ejem-
plo, arreglo[10] cuando solo hay 5
elementos), el programa puede com-
portarse de manera inesperada.

A este error se le llama desborda-
miento de índice (index out of range)
y es una de las causas más comunes
de fallos en programas que usan
arreglos.

.

Este método resulta útil cuando se conoce el conjunto exacto de valores que se
desea almacenar, ya que evita errores al calcular manualmente el tamaño y mejora
la legibilidad del código. Sin embargo, es importante recordar que todos los valores
deben coincidir con el tipo de dato declarado para el arreglo.

u Acceso
El acceso a los elementos de un arreglo unidimensional en C++ se realiza median-
te el uso de índices colocados entre corchetes ([]). Tal como se ha mencionado
anteriormente, los índices en C++ comienzan en 0, lo que significa que el primer
elemento del arreglo se encuentra en la posición cero. Para obtener el valor de un
elemento específico, basta con escribir el nombre del arreglo seguido del índice
correspondiente entre corchetes. Por ejemplo, si se tiene un arreglo de cinco ele-
mentos, el primer elemento se accede con el índice 0 y el último con el índice 4,
ya que los índices válidos van desde 0 hasta n-1, donde n es el tamaño del arreglo.

Ejemplo:

 int numeros[5] = {10, 20, 30, 40, 50};
 cout << numeros[0]; // Imprime 10 (primer elemento)
 cout << numeros[4]; // Imprime 50 (último elemento)

Es importante tomar en cuenta que intentar acceder a un índice fuera del rango
definido (por ejemplo, numeros[5]) provocará un error, ya que esa posición no existe
en memoria. Este es uno de los errores más comunes que se pueden cometer al
acceder a los datos de un arreglo.

En el siguiente ejemplo se muestra como un arreglo puede llenarse capturando sus
datos a través de entrada de usuario y como imprimir todo su contenido una vez que
fueron almacenado los datos en el.

 #include <bits/stdc++.h>
 using namespace std;
 int main() {
 const int TAM = 5; // Tamaño del arreglo
 string autobuses[TAM]; // Declaración del arreglo

 // Captura de datos
 cout << “Ingrese los nombres de ” << TAM << “ autobuses:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << “Autobus ” << i + 1 << “: ”;
 cin >> autobuses[i];
 }

 // Mostrar los datos capturados
 cout << “\nLista de autobuses ingresados:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << “Posicion [” << i << “] = ” << autobuses[i] << endl;
 }
 return 0;
 }

87PENSAMIENTO COMPUTACIONAL

Progresión 4

¿Sabías qué…?

El ciclo for es el más utilizado para re-
correr arreglos porque permite con-
trolar con precisión cuántas veces se
repite una instrucción.

Como el tamaño del arreglo se cono-
ce desde el inicio, el for ejecuta las
acciones exactamente n veces, una
por cada elemento.

Por eso, es más claro y menos pro-
penso a errores que otros ciclos
como while.

.

Interpretación:

1. Se define una constante llamada TAM con valor 5, que indica el tamaño del arre-
glo. El uso de una constante permite que el tamaño sea fácil de modificar y evita
errores al cambiarlo en varias partes del código.

2. Se declara un arreglo llamado autobuses de tipo string, el cual podrá almace-
nar 5 nombres. Cada posición del arreglo corresponde a un índice que va desde
0 hasta 4

3. Se utiliza la estructura de control repetitiva. Ciclo for para recorrer las posiciones
del arreglo y solicitar al usuario que ingrese los nombres de los autobuses.

	 l El ciclo inicia en i = 0 y termina en i < TAM, asegurando que se capturen
	 exactamente 5 nombres.

	 l En cada iteración, se muestra un mensaje indicando el número del au-
	 tobús y se almacena el valor ingresado en la posición correspondiente 	
	 del arreglo.

4. Una vez ingresados los nombres, se utiliza otro ciclo for para recorrer el arreglo
y mostrar cada elemento junto con su índice. Esto permite verificar que los datos
fueron almacenados correctamente.

5. Finaliza el programa. Se utiliza el return 0; para indicar que el programa terminó.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza lo siguiente:

1. Inicia un nuevo programa de C++ en Code Block que resuelva lo siguiente.

u Problema: Mi top de bandas legendarias del Rock

El rock nunca muere, solo se amplifica.

Imagina que eres parte de una comunidad estudiantil apasionada por el hard rock
y el heavy metal clásico, y que están preparando un especial llamado “Las Leyen-
das del Rock”.

Tu tarea es desarrollar un programa que permita registrar los nombres de las ban-
das legendarias favoritas de los estudiantes y luego mostrar una lista personalizada
con un formato inspirado en un cartel de concierto.

Entrada
l La primera línea contiene un número entero N, que representa la cantidad
de bandas que se van a registrar.

l Las siguientes N líneas contienen los nombres de las bandas (una cadena
por línea).

Salida
El programa debe mostrar un mensaje con el siguiente formato:

_\,,/ Cartel Oficial: ¡Las Leyendas del Rock! _\,,/

88 PENSAMIENTO COMPUTACIONAL

Progresión 4

Relaciónalo con...

En los programas que utilizan arre-
glos, las variables acumuladoras y
contadoras resultan esenciales para
procesar y analizar los datos almace-
nados.

El acumulador permite obtener re-
sultados como sumas o promedios,
mientras que el contador facilita sa-
ber cuántos elementos se han recorri-
do o cumplen una condición.

Sin ellas, sería mucho más difícil ob-
tener información útil del arreglo, ya
que no se tendría control sobre los
valores ni sobre la cantidad de datos
procesados.

.

a. [Nombre de la primera banda]
b. [Nombre de la segunda banda]
...
N. [Nombre de la última banda]

¡Prepárate para una noche de riffs y solos épicos!

Ejemplo:

Entrada Salida

6
AC/DC
Metallica
Iron Maiden
Led Zeppelin
Black Sabbath
Guns N’ Roses

_\,,/ Cartel Oficial: ¡Las Leyendas del Rock! _\,,/
1. AC/DC
2. Metallica
3. Iron Maiden
4. Led Zeppelin
5. Black Sabbath
6. Guns N’ Rouses

¡Prepárate para una noche de riffs y solos épicos!

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa en lenguaje C++ creado en Code Blocks colocando en el
nombre del archivo tus iniciales seguidas de _PC_P4_E01.

4 Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimen-
tación.

u Operaciones
En programación, los arreglos unidimensionales permiten una vez creados, reali-
zar distintas operaciones para recorrer, operaciones aritméticas con los elemen-
tos, buscar elementos dentro de ellos y ordenar los elementos; estas acciones son
esenciales para resolver problemas de cálculo, organización y análisis de datos.

Recorrido (Traversal)
Recorrer un arreglo significa acceder a cada uno de sus elementos, normalmente
usando un ciclo for, esto permite leer, mostrar o modificar.

 int arreglo[5] = {16,17,18,16,17};
 for (int i = 0; i < n; i++) {
 cout << arreglo[i] << endl;
 }

El ciclo for utiliza la variable i como índice que va aumentando en cada repetición,
lo que permite pasar o visitar todas las posiciones del arreglo una por una.

89PENSAMIENTO COMPUTACIONAL

Progresión 4

Para saber más…

Escanea el código QR para consultar
infografía de la Jerarquía de opera-
dores

.

Operaciones aritméticas con los elementos de un arreglo
Una de las ventajas del uso de arreglos en programación es que permiten realizar
operaciones aritméticas de manera ordenada y sistemática sobre un conjunto de
datos. Para poder realizar estas operaciones, es común recorrer el arreglo con un
ciclo y aplicar la operación deseada con cada elemento.

 int suma = 0;
 int calificaciones [5] = {8,9,7,8,9};
 for (int i = 0; i < n; i++) {
 suma += calificaciones[i];
 }
 cout << “La suma de las calificaciones es: ” << suma;

De forma similar, también pueden realizarse otras operaciones, como calcular pro-
medio, multiplicar los valores de una arreglo, entre otras.

Búsqueda (Search)
La operación de búsqueda de elementos en un arreglo es una de las operaciones
más usuales en programas que los utilicen, ya que no solo basta con almacenar
datos, sino que también es necesario localizar un valor especifico dentro del arre-
glo; para esto se pueden utilizar diferentes métodos de búsqueda, siendo el de
búsqueda lineal el más simple.

La búsqueda lineal consiste en recorrer el arreglo desde el primer hasta el último
elemento, comparando cada valor con el dato que se desea encontrar; si el valor
coincide el programa muestra la posición y detiene el recorrido si se llega al final
del arreglo sin encontrar coincidencias, significa que el valor no se encuentra en
el arreglo.

La búsqueda lineal es muy útil en especial cuando los elementos del arreglo no
están ordenados.

 bool encontrado = false;
 int buscado = 5;
 int numeros [6] = {3,7,12,5,9,4};
 for (int i = 0; i < 6 && !encontrado ; i++) {
 if (arreglo[i] == x) {
	 cout << “El número ” << buscado << “ se encuentra en
 la posición ” << i + 1 << endl;
 encontrado = true;
 }
 }

 if (!encontrado) {
	 cout << “El número no está en el arreglo. ” << endl;
 }

90 PENSAMIENTO COMPUTACIONAL

Progresión 4

Para saber más…

Escanea el código QR para observar
e interactuar con una infografía in-
teractiva sobre las operaciones con
arreglos.

.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza lo siguiente:

1. Inicia un nuevo programa de C++ en Code Blocks que resuelva lo siguiente.

u Problema: Buscando a tu personaje en el Torneo Multiverso Gamer

El Torneo Multiverso Gamer reúne a los personajes más icónicos de distintos vi-
deojuegos: desde héroes legendarios hasta villanos temidos.

Los organizadores del torneo te han pedido desarrollar un programa que permita
buscar si un personaje específico fue seleccionado para competir este año.

Tu tarea es:

l Registrar los nombres de los personajes participantes.

l Permitir que el usuario escriba el nombre de un personaje a buscar.

l Indicar si ese personaje está inscrito o no fue seleccionado para el torneo.

Entrada
l Un número entero N, que representa la cantidad de personajes inscritos.

l Las siguientes N líneas contienen los nombres de los personajes (una cadena
por línea).

l Finalmente, una cadena con el nombre del personaje a buscar.

Salida
El programa debe mostrar un mensaje con el siguiente formato:

l Si el personaje sí fue seleccionado:

l El personaje [nombre] está listo para la batalla en el Torneo Multiverso Gamer :)

l Si el personaje no fue seleccionado:
El personaje [nombre] no participa en el Torneo Multiverso Gamer este año :(

Entrada Salida

¿Cuántos personajes se inscribieron? 8

Personaje 1: Mario
Personaje 2: Link
Personaje 3: Pikachu
Personaje 4: Sonic
Personaje 5: Kratos
Personaje 6: Master Chief
Personaje 7: Lara Croft
Personaje 8: Scorpion

¿Cuál personaje quieres saber si participará
en el Torneo Multiverso Gamer? Kratos

El personaje Kratos está listo
para la batalla en el Torneo
Multiverso Gamer.

91PENSAMIENTO COMPUTACIONAL

Progresión 4

¿Sabías qué…?

En C++, las variables de tipo string
son, en realidad, arreglos de carac-
teres.

Cada letra ocupa una posición dentro
del arreglo, lo que permite acceder,
recorrer y modificar sus elementos
igual que en cualquier otro arreglo.

Por ejemplo, nombre[0] representa el
primer carácter de la cadena almace-
nada en la variable nombre.

.

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique. Guarda el
programa en lenguaje C++ creado en Code Blocks colocando en el nombre del
archivo tus iniciales seguidas de _PC_P4_E02.

3. Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimentación.

Además de recorrer o buscar datos específicos, es común que un programa que
usa arreglos se necesite identificar el valor más grande o más pequeño de todos
los elementos dentro del arreglo. Esto es útil para cuando se desea encontrar
por ejemplo la calificación más alta o más baja en un conjunto de calificaciones
grupales.

Para lograr esto, se utiliza un proceso muy sencillo:

1. Se declara una variable auxiliar que almacene temporalmente el primer valor
del arreglo.

2. A medida que el ciclo recorre los elementos, se compara cada uno con el valor
almacenado.

3. Si se encuentra un valor mayor (o menor), este reemplaza al anterior.

Encontrar el valor mínimo o máximo

Ejemplo de mínimo:

 int minimo = arreglo[0];
 int numeros[5] = {10,25,8,32,17};
 for (int i = 1; i < n; i++) {
 if (arreglo[i] < minimo) {
 minimo = arreglo[i];
 }
 }

 cout << “El valor más pequeño es: ” << menor << endl;

Ejemplo de máximo:

 int maximo = arreglo[0];
 int numeros[5] = {10,25,8,32,17};
 for (int i = 1; i < n; i++) {
 if (arreglo[i] > maximo) {
 maximo = arreglo[i];
 }
 }

 cout << “El valor más grande es: ” << mayor << endl;

92 PENSAMIENTO COMPUTACIONAL

Progresión 4

Para saber más…

Escanea el código QR y observa e
interactúa con la infografía interactiva
sobre el método burbuja.

.

Ordenamiento (Sorting)
Otra de las acciones que comúnmente se realizan con los arreglos, es la de ordenar
los elementos, esto significa organizarlos siguiendo un criterio, ya sea de mane-
ra ascendente o descendente. Uno de los algoritmos más sencillos para ordenar
los elementos de un arreglo es el método burbuja (Bubble sort), el cual basa su
funcionamiento en comparar pares de elementos adyacentes e intercambiar si no
están en el orden correcto, este proceso se repite varias veces hasta que todos los
elementos quedan ordenados.

Algoritmo de ordenamiento (método de la burbuja):

 for (int i = 0; i < n-1; i++) {
 for (int j = 0; j < n-i-1; j++) {
 if (arreglo[j] > arreglo[j+1]) {
 int temp = arreglo[j];
 arreglo[j] = arreglo[j+1];
 arreglo[j+1] = temp;
 }
 }
 }

Estas operaciones son esenciales para el manejo de datos en programas más com-
plejos. A continuación, se describen algunas de ellas con ejemplos prácticos en C++.

El lenguaje C++ cuenta con la función sort() que ordena el arreglo de menor a
mayor utilizando algoritmos avanzados optimizados internamente.

 int N = 5;
 int numeros[N];
 for (int i = 0 ; i < N ; i++){
 	cin >> numeros [i];
 }
 sort (numeros, numeros + N);

Otra de las funciones que el lenguaje C++ tiene para trabajar de manera eficiente
estructuras de datos es la función reverse() esta permite invertir el orden de los
elementos de un arreglo, logrando que al combinar la función sort() con la rever-
se() se obtenga el arreglo ordenado de manera descendente o viceversa según se
necesite.

 reverse (numeros, numeros + N);

93PENSAMIENTO COMPUTACIONAL

Progresión 4

Estas dos funciones, sort() y reverse() proporcionan herramientas eficientes para
trabajar de una forma rápida y con las estructuras de datos, optimizando el rendi-
miento y reduciendo la complejidad del código.

En el siguiente ejemplo se muestra como un arreglo puede llenarse capturando
sus datos a través de entrada de usuario y como imprimir todo su contenido una
vez que fueron almacenado los datos en el. Además de hacer un ordenamiento
Ascendente y Descendente.

#include <bits/stdc++.h>
using namespace std;

int main() {
 const int TAM = 5; // Tamaño del arreglo
 string autobuses[TAM]; // Declaración del arreglo

 // Captura de datos
 cout << “Ingrese los nombres de ” << TAM << “ autobuses:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << “Autobus ” << i + 1 << “: ”;
 cin >> autobuses[i];
 }

 // Mostrar los datos capturados
 cout << “\nLista de autobuses ingresados:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << “Posicion [” << i << “] = ” << autobuses[i] << endl;
 }

 // Ordenar en orden ascendente
 sort(autobuses, autobuses + TAM);
 cout << “\nLista ordenada en orden ASCENDENTE:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << autobuses[i] << “ ”;
 }
 cout << endl;

 // Ordenar en orden descendente usando reverse()
 reverse(autobuses, autobuses + TAM);
 cout << “\nLista ordenada en orden DESCENDENTE:” << endl;
 for (int i = 0; i < TAM; i++) {
 cout << autobuses[i] << “ ”;
 }
 cout << endl;

 return 0;
}

94 PENSAMIENTO COMPUTACIONAL

Progresión 4

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza lo siguiente:

1. Inicia un nuevo programa de C++ en CodeBlocks que resuelva lo siguiente.

u Problema: Ordenando los Likes del día

Un grupo de estudiantes de bachillerato está participando en un reto escolar en
redes sociales donde cada uno publica un video corto.

Tu tarea es desarrollar un programa que registre el número de “likes” que obtuvo
cada video durante el día y luego muestre esos valores ordenados de menor a
mayor para conocer quién tuvo más interacción.

Entrada
Un número entero N, que representa la cantidad de videos publicados.

Una línea con N números enteros separados por espacio, donde cada número
indica la cantidad de “likes” obtenidos por cada video.

Salida
El programa debe mostrar un mensaje con el siguiente formato:

Likes ordenados del reto escolar
[Like1] [Like2] [Like3]...[LikeN]

¡Así quedó el ranking del día!

Ejemplo:

Entrada Salida

¿Cuántos videos se publicaron el día de hoy? 6

Likes: 320
Likes: 150
Likes: 475
Likes: 290
Likes: 510
Likes: 410

Likes ordenados del reto
escolar

150 290 320 410 475 510

¡Así quedó el ranking del día!

2. Una vez terminado el programa, ejecuta y prueba su funcionamiento con los
casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa en lenguaje C++ creado en Code Blocks colocando en el
nombre del archivo tus iniciales seguidas de _PC_P4_E03.

4. Hazle llegar a tu profesor el algoritmo probado y listo para recibir retroalimen-
tación.

95PENSAMIENTO COMPUTACIONAL

Progresión 4

Concretando mis conocimientos
Es tiempo de demostrar tu aprendizaje de los temas de Estructuras de datos, reú-
nete con tu equipo de trabajo y de manera colaborativa realicen lo siguiente:

1. Inicia un programa de C++ en Code Blocks que resuelva el siguiente problema:
Raking Gamer – Busca tu posición en la tabla!.

Durante el evento “GameZone Challenge”, cientos de jugadores compiten en
línea por alcanzar la mayor puntuación posible.

Tú eres el encargado de desarrollar un programa que ayude a organizar el ranking
de jugadores y buscar si un jugador específico logró entrar en el Top del Día.

Tu programa debe:

l Leer puntuaciones obtenidas por los jugadores.
l Ordenarlas de mayor a menor (para formar el ranking).
l Permitir buscar una puntuación específica y decir si aparece en el ranking o no.
Además de la posición en la que está.

Entrada
l Un número N, que indica cuántos jugadores participaron.
l Una línea con N números enteros, separados por espacio, que representan las
puntuaciones obtenidas.
l Una línea adicional con una puntuación X que se desea buscar.

Salida
El programa debe mostrar los siguientes mensajes:
l La lista ordenada de puntuaciones (de mayor a menor).
l Un mensaje indicando si la puntuación buscada se encuentra en el ranking y en
que posición se encuentra.

Mensaje de salida en caso de encontrar la puntuación:
La puntuación X está en la posición N del ranking. ¡Buen trabajo gamer!.

Mensaje de salida en caso de no encontrar la puntuación:
La puntuación X no aparece en el ranking. ¡Sigue practicando!.

96 PENSAMIENTO COMPUTACIONAL

Progresión 4

Entrada Salida

¿Cuántos jugadores participaron? 8
Puntaje jugador 1: 540
Puntaje jugador 2: 720
Puntaje jugador 3: 610
Puntaje jugador 4: 450
Puntaje jugador 5: 900
Puntaje jugador 6: 660
Puntaje jugador 7: 830
Puntaje jugador 8: 700
¿Cuál puntaje deseas buscar? 720

Ranking del GameZone Challenge
1: 900
2: 830
3: 720
4: 700
5: 660
6: 610
7: 540
8: 450
La puntuación 720 está en la posición
3 del ranking. ¡Buen trabajo gamer!

¿Cuántos jugadores participaron? 5
Puntaje jugador 1: 300
Puntaje jugador 2: 250
Puntaje jugador 3: 400
Puntaje jugador 4: 380
Puntaje jugador 5: 500
¿Cuál puntaje deseas buscar? 600

Ranking del GameZone Challenge
1: 500
2: 400
3: 380
4: 300
5: 250
La puntuación 600 no aparece en el
ranking. ¡Sigue practicando!

2. Una vez terminado el algoritmo ejecuta y comprueba su correcto funcionamien-
to con los casos de ejemplo y otros valores adicionales que tu profesor indique.

3. Guarda el programa de C++ creado en Code Blocks colocando en el nombre
del archivo tus iniciales seguidas de PC_P4_CMC.

4. Comparte con tu profesor por el medio que indique tu algoritmo probado y listo
para recibir evaluación.

Instrumento de evaluación
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluará tu programa en Code Blocks.

Indicador Si No Puntos

El algoritmo solicita correctamente los datos
de entrada: número de jugadores, puntuacio-
nes y puntuación a buscar.

1

Se muestra un mensaje inicial indicando el
propósito del programa (organizar ranking y
buscar puntuación).

1

Se ordenan correctamente las puntuaciones
de mayor a menor.

3

Se busca correctamente la puntuación desea-
da y se determina si está en el ranking.

2

Se muestra la posición de la puntuación bus-
cada con un mensaje claro y motivador.

2

Se muestra un mensaje adecuado si la
puntuación no se encuentra en el ranking.

1

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en esta progresión, realiza la
actividad interactiva, ingresa a ella
escaneando el código QR.

97PENSAMIENTO COMPUTACIONAL

Progresión 4

Valorando mi aprendizaje
La evaluación es un proceso continuo de formación, útil para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentación y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guían en
la valoración de los aprendizajes que adquiriste progresivamente en las secuencias
didácticas anteriores. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendí
Contesta las siguientes preguntas y reflexiona sobre tu desempeño en estas dos
progresiones.

l ¿Qué fue lo más importante que aprendiste sobre las estructuras de control en
C++ y cómo consideras que este conocimiento te ayuda a pensar de manera más
lógica en otras materias?

l Reflexiona sobre la importancia de las estructuras de control en la creación de
programas funcionales. ¿Qué relación encuentras entre organizar instrucciones en
C++ y organizar tareas o actividades en tu vida diaria?

l Piensa en un programa que hayas codificado utilizando arreglos en C++. ¿Qué
fue lo más difícil y qué aprendiste del proceso de prueba y error?

l Después de todo lo aprendido, ¿qué consideras que necesitas practicar más en
programación estructurada en C++ y por qué crees que eso será importante para
tu avance académico?

Actividad alternativa
Resuelve para reforzar tu aprendizaje e incrementar tu evaluación.

1. Crea un video donde se observe y expliques:
	 a. El diseño de un programa en lenguaje C++ para calcular el promedio
	 de calificaciones.
	 b. El resultado debe mostrar el promedio de un alumno y los mensaje de
	 nivel según el resultado:
		 l “Excelente” para calificación 9-10
		 l “Suficiente” para calificación 7-8
		 l “Necesitas apoyo para calificación 5-6”.
	 c. Emplea el tipo de estructura que optimice la operación.

2. Envía el video a tu profesor para que evalúe tu desempeño.

98 PENSAMIENTO COMPUTACIONAL

Progresión 4

Autoevaluación
La autoevaluación es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una √ la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Metas Criterios
Nivel de dominio

Sí lo
logro

En
proceso

Aún no
lo logro

Distingue la sintaxis básica de C++
y la utilidad de las estructuras de
control para organizar la ejecución
de instrucciones.

Identifico la sintaxis básica de C++ (declaración de variables,
operadores, entradas y salidas).

Reconozco la utilidad de las estructuras de control selectivo y
repetitivo.

Representa soluciones a problemas
cotidianos y académicos mediante
algoritmos que incorporan estruc-
turas de control secuenciales y
repetitivas.

Selecciono la estructura de control adecuada según el problema
planteado.

Explico en qué casos conviene utilizar cada tipo de estructura de
control.

Codifica, compila y ejecuta progra-
mas en C++ validando su funciona-
miento y corrigiendo errores en el
uso de estructuras de control.

Traduzco un algoritmo a código C++ utilizando correctamente
las estructuras de control.

Compilo y ejecuto programas verificando que funcionen según
lo esperado.

Identifica la utilidad de los arreglos
unidimensionales en la resolución
de problemas que requieren mane-
jar múltiples valores del mismo tipo
de datos.

Reconozco problemas que requieren almacenar muchos valores
del mismo tipo.

Identifico cuándo es más eficiente usar un arreglo en lugar de
variables aisladas.

Representa soluciones a problemas
cotidianos y académicos mediante
el diseño de algoritmos que em-
plean arreglos unidimensionales.

Diseño algoritmos que incluyen la declaración, lectura y uso de
arreglos unidimensionales.

Estructuro los pasos para recorrer un arreglo (búsqueda, conteo,
acumulación, etc.).

Codifica y ejecuta programas en
C++ que utilizan arreglos unidimen-
sionales para almacenar, recorrer y
procesar datos (suma, promedio,
máximo, mínimo, búsqueda lineal y
ordenamiento).

Declaro y utilizo correctamente arreglos unidimensionales en
C++.

Implemento operaciones de procesamiento: suma, promedio,
máximo, mínimo.

Realizo búsqueda lineal en un arreglo.

Lo mejor que aprendí fue:

Lo que necesito reforzar es:

Calificación que doy a mi
desempeño:

Excelente Satisfactorio En desarrollo Inicial

99PENSAMIENTO COMPUTACIONAL

Progresión 4

Coevaluación
Evalúa el desempeño general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluación y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos faltó (2) Debemos mejorar (1) Evaluación

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

Se organizó el trabajo, pero no se esti-
pularon tareas, prioridades o el plazo de
entrega final.

No hubo organización para realizar
nuestros trabajos.

Cumplimos cada uno con las tareas
asignadas en el plazo estipulado.

Casi todos los miembros del equipo cum-
plimos con las tareas asignadas y el plazo
estipulado; teniendo que resolver lo que a
otros les fue encomendado.

Un solo miembro del equipo realizó
todos los productos.

Todos participamos activamente en
la elaboración de los productos.

Casi todos los miembros del equipo parti-
cipamos activamente en la elaboración de
los productos.

No hubo participación de los miem-
bros del equipo en la elaboración
de los productos.

La calidad de los productos que
elaboramos fue la adecuada para su
entrega.

La calidad de los productos que elabora-
mos fue en su mayoría la adecuada para
su entrega.

No se cumplió con la calidad
adecuada de los productos para su
entrega.

Total ___ de 12

PENSAMIENTO COMPUTACIONAL100

Simula sistemas robóticos mediante aplicaciones gráficas y la programación en Arduino, implementando estructuras
básicas de código (setup y loop), funciones elementales (pinMode, digitalWrite, delay), control de salidas
múltiples mediante ciclos y retardos, así como el uso de sensores y actuadores para resolver problemas simples de
automatización.

Tiempo estimado: 12 horas

Tus metas serán:
l Identificar la importancia de la robótica educativa como herramienta para comprender la interacción entre
 hardware y software.

l Configurar sistemas básicos de automatización en un entorno gráfico controlando las salidas.

l Codificar programas con estructuras de control, funciones básicas, bucles, sensores y actuadores en simuladores.

Robótica
EducativaPr

og
re

si
ón

5

Recuperando lo que sabemos

Este cuestionario es de recuperación de conocimientos previos, es útil para identificar tus saberes y habilidades y cómo
los relacionas con la realidad, además te ayudará a comprender mejor los temas de esta progresión. No es necesario que
conozcas los términos técnicos; lo importante es expresar cómo entiendes o aplicarías cada situación, haz tu mejor esfuerzo
y detecta aquellos aspectos que no conoces o dominas para enfocar tu estudio.

1. Cuando escuchas las palabras “Robótica Educativa”, ¿qué es lo primero que te viene a la mente? ¿Qué esperas aprender
o ser capaz de construir utilizando robots en un entorno de aprendizaje?

2. Si tuvieras que explicarle a un amigo qué es un robot, ¿qué dirías que son sus tres partes esenciales para que pueda
realizar una tarea? (Pista: Piensa en cómo interactúa con el mundo, cómo “piensa” y cómo se mueve).

3. ¿De qué manera crees que el conocimiento de la programación y la robótica podría ser relevante o útil para tu futuro,
incluso si no planeas ser ingeniero o programador?

PENSAMIENTO COMPUTACIONAL 101

Progresión 5

Reactivando mis conocimientos

Cada vez que diseñas un robot, decides qué sensores usar o programas sus movimientos, estás aplicando lógica, secuencia
y análisis de problemas, los mismos principios que se utilizan al crear un algoritmo.

Imagina este escenario:

En tu clase de robótica, tu equipo debe programar un robot para que recoja objetos de diferentes colores y los coloque en
cajas según su categoría. Tu objetivo es diseñar un procedimiento paso a paso que permita al robot identificar el color del
objeto, decidir a qué caja llevarlo y completar la tarea de manera eficiente.

1. En tu cuaderno o documento digital, escribe los pasos que seguirías para que un robot detecte un objeto más cercano,
leer el color del objeto, decidir la caja correspondiente al color, mover el robot hacia la caja correcta, colocar el objeto en la
caja y repetir el proceso hasta que no queden objetos.

2. Identifica los elementos del problema:

	 l Datos de entrada: ¿Qué información recibes?
	 l Proceso: ¿Qué acciones o reglas aplicas para clasificar colores?
	 l Salida: ¿Cuál es el resultado final o estado ideal de tu pantalla?

3. Reflexiona y responde en tus notas:

l ¿Qué parte de tu procedimiento crees que un programa podría automatizar?
l ¿Cómo te ayudaría usar un entorno de desarrollo para simular tu algoritmo antes de programarlo?
l ¿Qué ventajas tendría poder observar cómo se ejecutan tus pasos uno por uno en una simulación?

Comparte en clase tus pasos y reflexiones con tus compañeros y el profesor. Analicen juntos cuál de los procedimientos fue
más claro, ordenado y eficiente, y comenten cómo ese mismo proceso podría transformarse en un algoritmo computacional
para el robot.

PENSAMIENTO COMPUTACIONAL102

Progresión 5

Conceptos clave

Robot. Fue inventada por el escri-
tor checo Karel Capek para desig-
nar a los autómatas de su obra tea-
tral de ciencia ficción R.U.R (Robots
Universales Rossum), estrenada en
Praga en 1921. Una palabra acuña-
da por Capek a partir del término
checo robota, que hace referencia
al trabajo duro.

¿Sabías qué…?

La robótica no solo consiste en cons-
truir máquinas con forma humana.
En realidad, es la combinación de
mecánica, electrónica y programa-
ción para crear sistemas capaces de
realizar tareas autónomas.

¡Mucho más que robots humanoi-
des de película!

Historia

En la actualidad, la tecnología forma parte esencial de la vida diaria desde los
teléfonos inteligentes hasta los sistemas automatizados en fábricas, la innovación
tecnológica está presente en casi todo lo que nos rodea.

Dentro de este contexto surge la robótica, una disciplina que despierta gran in-
terés y curiosidad. Sin embargo, cuando se pregunta qué es la robótica, lo más
común es relacionarla únicamente con robots humanoides o con escenas de pelí-
culas de ciencia ficción; esta idea, aunque popular, no refleja la verdadera esencia
de la robótica.

Las maquinas a las que comúnmente se les llaman robots, son diseñadas para
actividades muy diversas: desde ensamblar piezas en una fábrica hasta explorar
otros planetas. Más allá de la imagen futurista que se suele tener, la robótica es
una herramienta práctica que busca facilitar procesos, mejorar la calidad de vida y
ampliar las posibilidades de la ciencia y la tecnología.

¿Qué es la Robótica y Qué es un Robot?

La robótica es una rama interdisciplinaria que combina conocimientos de ingenie-
ría mecánica, electrónica, eléctrica, control y ciencias de la computación.

Ramas de la ciencia que integran la robótica.

Su objetivo es diseñar, fabricar y programar máquinas automáticas con cierto gra-
do de inteligencia, capaces de ejecutar tareas específicas. Por su parte, un robot
es una máquina programable que puede tomar decisiones basadas en la estructura
de su programa y realizar acciones de manera automática.

En términos sencillos, la robótica se dedica al diseño y desarrollo de robots capa-
ces de sustituir o complementar actividades humanas en distintos ámbitos, como

5.1 Introducción a la robótica

PENSAMIENTO COMPUTACIONAL 103

Conceptos clave

STEM. El modelo educativo ha
evolucionado hacia STEAM, incor-
porando el arte como un elemento
fundamental para fomentar la
creatividad y la innovación en los
procesos de aprendizaje.

¿Sabías qué…?

STEAM en educación no tiene nada
que ver con videojuegos. Es un en-
foque que une ciencia, tecnología,
ingeniería, arte y matemáticas para
desarrollar habilidades del siglo XXI.

¡Muy distinto a Steam, la tienda digi-
tal de juegos!

Tipo de educación con orígenes
en la década de los 90.

Progresión 5

la industria, el hogar o los entornos científicos; esta disciplina no se limita única-
mente a especialistas, sino que también resulta accesible para estudiantes y entu-
siastas interesados en aprender y experimentar.

u Clasificación de la Robótica

La robótica se aplica en diversos campos, entre los que destacan:

l Robótica industrial: diseña robots para procesos de manufactura y ensamble,
como la producción automotriz, la clasificación de piezas y el empaquetado de
alimentos. Su objetivo es reducir costos, optimizar tiempos y minimizar errores
humanos.
l Robótica de servicio: incluye robots que brindan asistencia a las personas,
como sistemas quirúrgicos, robots de limpieza, dispositivos para entretenimiento,
exploración y rescate.
l Robótica espacial: se enfoca en la creación de robots para la exploración del
espacio. Ejemplos son los robots Spirit y Opportunity, enviados a Marte para inves-
tigar la posible existencia de agua.

Robot Spirit que forma parte del Programa de Exploración de
Marte de la NASA. Enviada en enero de 2004.

u Robótica Educativa y STEM

Además de sus aplicaciones industriales y científicas, la robótica tiene un papel
fundamental en la educación. La robótica educativa, también llamada robótica
pedagógica, busca que los estudiantes se familiaricen con la programación y el
diseño de robots desde edades tempranas.

Esta disciplina se adapta al nivel académico del alumno, ofreciendo herramientas
sencillas para la educación básica y sistemas más complejos para niveles superio-
res.

La robótica educativa forma parte del modelo STEM (Science, Technology, Engi-
neering and Mathematics), que promueve el aprendizaje práctico de la ciencia, la
tecnología y las matemáticas.

Este enfoque permite desarrollar habilidades cognitivas, pensamiento lógico y crea-
tividad, mientras se aprende a resolver problemas mediante la experimentación.

PENSAMIENTO COMPUTACIONAL104

Progresión 5

Conceptos básicos de electricidad y electrónica

La electricidad y la electrónica forman los cimientos de casi toda la tecnología
moderna, y comprenderlas es indispensable para adentrarse en el mundo de la ro-
bótica. La electricidad se define como el movimiento de cargas eléctricas a través
de un material conductor, lo que permite transportar energía y activar dispositivos
como motores, luces o sensores; por otro lado la electrónica, es la rama de la
tecnología que estudia, controla y aprovecha ese flujo de electricidad mediante
componentes específicos como resistencias, diodos, transistores, microcontrola-
dores y circuitos integrados.

La electricidad entonces se origina por el movimiento de partículas cargadas lla-
madas electrones, que poseen carga negativa. Cuando estos electrones se des-
plazan por un conductor metálico, generan lo que se conocer como corriente
eléctrica.

Un ejemplo cotidiano es el cargador de un teléfono celular, al conectarlo a la co-
rriente, la electricidad fluye por el cable para alimentar el dispositivo y permitir que
la batería se recargue.

Para describir y medir la electricidad se emplean unidades específicas:

l Voltio (V): representa la fuerza que impulsa a los electrones a moverse por un
circuito.

l Amperio (A): indica la cantidad de corriente eléctrica que está circulando en
un conductor.

Existen dos formas principales de corriente eléctrica:

l Corriente alterna (CA) o AC (en inglés): es el tipo de corriente eléctrica en la
que el sentido del flujo de los electrones (la polaridad) cambia periódicamente, a
intervalos regulares, con un patrón oscilante que se representa como una onda si-
nusoidal. Debido a esta variación de polaridad, la corriente alterna fluye en ambos
sentidos dentro del circuito.

La velocidad a la que ocurre esta oscilación se mide en hertzios (Hz), que indican
cuántos ciclos se producen por segundo. En muchos países europeos y de otras
regiones, la frecuencia es de 50 Hz, mientras que en países como México y Estados
Unidos es de 60 Hz.

La corriente alterna es ideal para transportar energía a grandes distancias, ya que
puede transformarse fácilmente a diferentes voltajes mediante transformadores.
Por este motivo, es el tipo de corriente que se emplea en la distribución eléctrica
desde las centrales generadoras hasta zonas urbanas y residenciales, es decir, es la
que llega a los hogares y alimenta la mayoría de los electrodomésticos.

l Corriente continua (CC) o DC (en inglés): en la corriente continua, los elec-
trones se desplazan de manera constante en una sola dirección, sin cambios de
polaridad. Este flujo estable resulta especialmente adecuado para dispositivos
electrónicos que requieren un suministro preciso y uniforme.

¿Sabías qué…?

La electricidad es simplemente el
movimiento de cargas eléctricas,
pero es la base de casi todo lo que
usamos a diario: desde tu celular
hasta el refrigerador.

¡Un fenómeno invisible… pero impres-
cindible!

Conceptos clave

Oscilante. Describe algo que oscila,
es decir, que se mueve o varía de for-
ma repetitiva y recurrente alrededor
de una posición de equilibrio

Relaciónalo con...

La Corriente Directa (CD) es la que
entregan las pilas, baterías y paneles
solares. Fluye en un solo sentido, lo
que la hace ideal para electrónica y
dispositivos portátiles.

¡La energía perfecta para lo que se
lleva en el bolsillo!

PENSAMIENTO COMPUTACIONAL 105

Progresión 5

La corriente continua proviene de fuentes como pilas, baterías, paneles solares y
otros generadores. Es la energía que almacenan las baterías de los teléfonos mó-
viles, computadoras portátiles, controles remotos y muchos dispositivos portátiles.
Incluso los aparatos que funcionan conectados a la corriente alterna suelen conver-
tirla internamente en corriente continua para su funcionamiento interno.

Representación de las corrientes CC y AC.

Resistencia: La resistencia es la oposición que presenta un material al paso de la
corriente eléctrica. Se mide en ohmios (Ω).

En las resistencias hay códigos de colores. Estos códigos se utilizan para medir la “re-
sistencia de las resistencias”, por lo cual es fundamental conocer esta codificación.

El código de resistencia está compuesto por un número de bandas que oscilan
entre 3 a 6. Siendo la más común la de 4 bandas.

Representación gráfica de la resistencia y su código de colores.

En la resistencia de la imagen podemos observar que:
l Banda 1 es de color azul por lo tanto corresponde a un 6.
l Banda 2 es de color rojo por lo tanto corresponde a un 2.
l Banda 3 es de color verde por lo tanto corresponde a multiplicarlo por 100,000 Ω.
l Banda 4 es de color dorado por lo tanto corresponde a una tolerancia del 5%

Entonces para calcular el valor de la resistencia sería:
62 x 100,000Ω = 6,200,000Ω

Por lo tanto, la resistencia tiene un valor de 6.2 megaohmios (MΩ) con una tole-
rancia de ± 5%.

¿Sabías qué…?

Las resistencias no solo controlan la
corriente eléctrica: también vienen
en distintos tamaños y potencias
según lo que pueden soportar. Las
más comunes son las pequeñas de
¼ de watt, ideales para proyectos
con Arduino, pero también existen
resistencias más grandes que disipan
mayor calor.

¡Su tamaño no es al azar, sino una
pista de cuánta energía pueden ma-
nejar!

PENSAMIENTO COMPUTACIONAL106

Progresión 5

Por ejemplo, si se conecta directamente un LED a una pila de 9 voltios sin utilizar
resistencia, la corriente que circula será demasiado alta y el LED se quemará casi
de inmediato. Esto ocurre porque el componente no está diseñado para soportar
ese nivel de corriente. En cambio, al colocar una resistencia de 330 Ω en serie con
el LED, la corriente se reduce a un nivel seguro, evitando que el LED sufra daños,
ya que la resistencia actúa como un limitador que controla cuánta corriente pasa
por el circuito.

La Ley de Ohm establece la relación entre el voltaje (V), la corriente eléctrica (I) y
la resistencia (R). Esta ley indica que, si se conocen dos de estos valores, es posible
calcular el tercero mediante la fórmula: V = I × R

Suponiendo que se cuenta con una pila de 9 voltios y una resistencia de 330 Ω
conectada en un circuito sencillo, para calcular la corriente usando la ley de Ohm y
sustituyendo los valores se obtiene:

I = = ≈ 0.027 A (27 mA) V/R

Este cálculo permite determinar la cantidad de corriente que pasará por el circuito
y verificar si es segura para componentes sensibles, como un LED. De esta manera,
la Ley de Ohm se convierte en una herramienta fundamental para diseñar y evaluar
circuitos eléctricos básicos.

La potencia eléctrica indica la cantidad de energía que un dispositivo consume en
un tiempo determinado. Se mide en vatios (W) y se calcula mediante la fórmula:

P=V ×I

Por ejemplo, si una lámpara está conectada a una fuente de 120 V y consume
0.5 A de corriente, su potencia puede calcularse sustituyendo estos valores en la
fórmula:

P=V ×I
P=120V ×0.5 A

P=60 W

Esto significa que la lámpara consume 60 vatios de potencia, dato que permite
estimar su gasto energético y comparar la eficiencia entre distintos dispositivos.

La polaridad se refiere a la identificación del polo positivo (+) y negativo (−) en
componentes eléctricos y electrónicos. Muchos dispositivos funcionan de manera
correcta únicamente si están conectados con la polaridad adecuada.

Al conectar un LED por ejemplo, es necesario unir el ánodo (+) al lado positivo
de la pila y el cátodo (−) al lado negativo. Si la polaridad se invierte, el LED no
encenderá, ya que los diodos permiten el paso de la corriente únicamente en una
dirección.

Respetar la polaridad es fundamental para asegurar el funcionamiento adecuado
de los componentes electrónicos y evitar fallas en el circuito.

Representación gráfica de la

polaridad de un LED.

Representación gráfica de la

polaridad de un LED.

PENSAMIENTO COMPUTACIONAL 107

Progresión 5

Aplicaciones

La robótica educativa se ha convertido en una herramienta clave para desarrollar
habilidades tecnológicas en estudiantes, fomentando el aprendizaje práctico y la
creatividad. Dentro de este contexto, Arduino destaca como una de las platafor-
mas más accesibles y versátiles para introducir a los alumnos en el mundo de la
programación y la electrónica aplicada.

Arduino es una placa de desarrollo basada en un microcontrolador que permite
controlar dispositivos electrónicos mediante instrucciones programadas. Su diseño
abierto y su facilidad de uso la convierten en el punto de partida ideal para proyec-
tos de robótica, automatización y sistemas interactivos.

En la placa de Arduino, se pueden aplicar conceptos básicos de electricidad y
electrónica, como voltaje, corriente, resistencia y polaridad en proyectos reales,
reforzando la comprensión teórica con experiencias prácticas.

Dentro del proyecto Arduino existe una amplia variedad de placas de desarrollo
diseñadas para diferentes tipos de proyectos. Algunas son modelos básicos, idea-
les para tareas sencillas con pocas entradas y salidas; otras son más avanzadas,
ofreciendo mayor cantidad de pines y capacidades adicionales. También se en-
cuentran placas con conexión a redes cableadas o inalámbricas, versiones compac-
tas para proyectos donde el espacio es limitado e incluso placas flexibles pensadas
para integrarse en prendas de vestir.

El modelo Arduino UNO R3 ha sido seleccionado por su facilidad de uso, versati-
lidad y amplia compatibilidad con componentes y simuladores, lo que lo convierte
en la opción ideal para introducir conceptos de electrónica, programación y robó-
tica educativa.

Partes de la placa Arduino UNO R3.

¿Sabías qué…?

Arduino nació en 2005 en Ivrea, Ita-
lia, como un proyecto para facilitar
la enseñanza de la electrónica y la
programación. Fue creado por un
equipo encabezado por Massimo
Banzi, junto con David Cuartielles,
Tom Igoe, Gianluca Martino y David
Mellis.

¡Comenzó como una herramienta
para estudiantes… y terminó revo-
lucionando el mundo del hardware
abierto!

Placa Arduino UNO R3

Relaciónalo con...

Existen diferentes placas Arduino,
cada una diseñada para un tipo de
proyecto. La Arduino Uno es la más
famosa y perfecta para empezar; la
Mega ofrece más pines para proyec-
tos grandes; la Nano es ideal para es-
pacios pequeños; y la Leonardo pue-
de funcionar como teclado o ratón.

¡Cada placa tiene su propia persona-
lidad y propósito en el mundo!

PENSAMIENTO COMPUTACIONAL108

Progresión 5

u Partes de la placa Arduino UNO R3

l Puerto de alimentación externa: permite suministrar energía a la placa cuan-
do no está conectada mediante el cable USB tipo B. Este puerto se utiliza en
proyectos donde el Arduino debe funcionar de forma autónoma, sin depender de
una computadora. Generalmente se conectan fuentes de voltaje externas, siempre
dentro del rango permitido por la placa, que va de 7 V a 12 V. Superar este límite
puede ocasionar daños irreversibles en el dispositivo.
	 l Pines de alimentación:
	 l Vin: voltaje de entrada si se emplea una fuente externa dentro del
	 l rango de 7-12V.
	 l 5V: suministra un voltaje regulado de 5 voltios, ideal para módulos y
	 sensores compatibles con esta tensión.
	 l 3.3v: ofrece una salida 3.3 voltios para componentes de baja tensión.
	 l GND: representa la tierra del circuito, es fundamental para completar
	 cualquier conexión eléctrica.
l Pines analógicos (A0 a A5): permiten leer señales analógicas provenientes de
sensores como potenciómetros, sensores de temperatura o humedad; convierten
la señal analógica en un valor digital que va de 0 a 1023, debido a una resolución
interna de 10 bits.
l Pines digitales (D0 a D13): pueden configurarse tanto como entradas (INPUT)
como salidas (OUTPUT). Algunos de estos tienen funciones especiales:
	 l D0 y D1: se utilizan para comunicación serial (RT y TX).
	 l D3, D5, D6, D9, D10 y D11: generan señales PWM (modulación por
	 ancho de pulso) se activan con (analogWrite).
l Botón de reset: reinicia el programa cargado sin necesidad de desconectar el
Arduino. Es útil para volver a ejecutar el código desde el principio.

u Simuladores

Los simuladores son herramientas fundamentales para el aprendizaje práctico, ya
que permiten experimentar y desarrollar habilidades sin necesidad de utilizar equi-
pos físicos costosos o complejos. En el ámbito educativo, ayudan a comprender
conceptos abstractos y favorecen la creatividad mediante una práctica segura y ac-
cesible. Antes de adquirir una placa Arduino y dedicar tiempo al montaje real, es
recomendable validar el diseño del circuito de manera virtual. Los simuladores de
Arduino permiten recrear la placa y sus componentes, probar el funcionamiento
del circuito y verificar el código, asegurando que todo opere correctamente antes
de llevarlo a la práctica física. Algunos de los simuladores más comunes son:

l Tinkercad: Plataforma intuitiva para diseño 3D y simulación de circuitos elec-
trónicos. Ideal para principiantes y proyectos educativos.
l Wokwi: Simulador avanzado para microcontroladores como Arduino, ESP32 y
Raspberry Pi. Perfecto para desarrolladores que buscan probar código y hardware
virtualmente.
l Proteus: Software profesional para simulación de circuitos y sistemas embebi-
dos. Muy usado en entornos académicos y de ingeniería.
l Xevro: Ofrece simuladores y herramientas para proyectos electrónicos y auto-
matización, con enfoque en hardware real y entornos industriales.
l IDE de Arduino: Aunque es principalmente un entorno de desarrollo, incluye
funciones de simulación y pruebas básicas para código antes de cargarlo en hard-
ware real.

¿Sabías qué…?

Algunos pines digitales del Arduino
Uno tienen la función especial PWM,
marcada con el símbolo “~”.

Esto permite crear señales que pa-
recen analógicas, como variar el bri-
llo de un LED o la velocidad de un
motor.

¡No son analógicos reales, pero en-
gañan muy bien!

Relaciónalo con...

Wokwi es un simulador de Ardui-
no que funciona 100% online y sin
límites: puedes usar ESP32, Arduino
Mega, sensores avanzados y hasta
pantallas OLED.

¡Ideal para probar proyectos com-
plejos sin hardware real!

PENSAMIENTO COMPUTACIONAL 109

Progresión 5

Para saber más…

Escanea el código QR y observa el
video Tinkercad.

¿Sabías qué…?

Tinkercad permite simular circuitos
electrónicos y programar un Arduino
como si fuera un dispositivo real, sin
necesidad de tener componentes
físicos.

Gracias a su simulador, puedes pro-
bar sensores, LEDs, motores y hasta
escribir código en Arduino C++ para
ver cómo funciona al instante. Esto
convierte a Tinkercad en una de las
herramientas más accesibles y segu-
ras para aprender electrónica y robó-
tica desde cualquier computadora.

Tinkercad es una plataforma en línea gratuita, desarrollada por Autodesk, que
permite crear modelos 3D, simular circuitos electrónicos y programar microcontro-
ladores mediante una interfaz intuitiva y accesible para usuarios de cualquier nivel.
Por su diseño sencillo y visual, se ha convertido en una herramienta fundamental
dentro de la educación tecnológica, ya que facilita el aprendizaje práctico sin ne-
cesidad de contar con equipos físicos costosos o complejos.

En el ámbito de la robótica educativa, Tinkercad aporta un espacio seguro y dinámi-
co para experimentar con componentes electrónicos, comprender el funcionamien-
to de sensores y actuadores, y validar el comportamiento de un circuito antes de
construirlo en la realidad. Su simulador de circuitos permite observar en tiempo real
cómo interactúan las conexiones, el voltaje, la corriente y las instrucciones de pro-
gramación, lo que ayuda a relacionar conceptos teóricos con resultados concretos.

Para comenzar a usar la plataforma es necesario crear una cuenta:
1. Accede al sitio web oficial.
	 1.1 En cualquier navegador escribe https://www.tinkercad.com.
2. Haz clic en “Join Now” o “Únete ahora”.
	 2.2 El botón se encuentra en la parte superior derecha de la página.
3. Selecciona el tipo de cuenta.
	 3.1 Personal: Para uso individual.
4. Elige el método de registro.
	 4.1 Puedes registrarte usando:
		 l Correo electrónico y contraseña (creando una cuenta nue-
		 va), o Cuenta de Google, Apple o Microsoft (inicio rápido).
5. Completa la información requerida.
	 l Nombre de usuario, correo electrónico y contraseña.
6. Acepta los términos y condiciones.
	 l Marca la casilla correspondiente.
7. Verifica tu correo electrónico.

Interfaz gráfica
Al ingresar con la cuenta creada a Tinkercad se muestra la pantalla principal de la
aplicación.

Pantalla de inicio en Tinkercad.

5.2 Aplicación TinkerCAD

110 PENSAMIENTO COMPUTACIONAL

Progresión 5

Para ingresar al apartado de Circuitos, una vez en la pantalla principal es necesario
desplazarse hacia abajo donde se muestran distintas secciones como: Diseños 3D,
Circuitos y Bloques de código.

Pantalla de inicio en Tinkercad en la sección de Circuitos.

En esta sección es donde se pueden crear diseños de circuitos con Arduino y
acceder a la simulación de su funcionamiento. Al seleccionar la opción Crea tu pri-
mer diseño de circuitos, se muestra la interfaz con las herramientas para construir
y programar circuitos.

Interfaz en la creación de circuitos.

Panel de acciones: permite realizar diversas operaciones de edición, como copiar,
pegar y eliminar elementos, además de deshacer o rehacer cambios. También per-
mite modificar el color de las líneas y seleccionar el tipo de conexión, con opciones
como Normal, Conexión, Cocodrilo y Automático. Adicionalmente, ofrece la posi-
bilidad de rotar los componentes para ajustar su orientación.

Panel Simulador/Programación: muestra el código fuente correspondiente al cir-
cuito y permite ejecutar su simulación para verificar el funcionamiento. Además,
ofrece la opción de compartir el proyecto con otras personas de manera sencilla.

Área de trabajo: espacio donde se colocarán y organizarán todos los componen-
tes necesarios para construir los circuitos que se diseñarán posteriormente.

Relaciónalo con...

En la interfaz de Tinkercad, el área
central es tu mesa de trabajo, don-
de colocas componentes, cables y
tu Arduino. Es como un banco de
pruebas digital listo para experimen-
tar. ¡Ahí es donde tus ideas toman
forma!

¿Sabías qué…?

En la barra derecha de Tinkercad,
encontrarás la biblioteca de com-
ponentes: LEDs, botones, motores,
resistencias, sensores y más.

Solo arrastras y sueltas lo que ne-
cesitas.

111PENSAMIENTO COMPUTACIONAL

Progresión 5

Categorías / Componentes: se visualiza inicialmente la categoría Básicos, donde
los componentes visibles pertenecen a dicha sección. El panel ofrece dos opciones
principales: Básicos y Todos, además de un espacio dedicado a elementos especí-
ficos como placas Arduino, dispositivos Micro:bit y ensamblajes de circuitos.

Componentes básicos

Protoboard
También llamado breadboard constituye una plataforma de pruebas utilizada en
el ámbito del diseño electrónico para la construcción rápida de circuitos eléctricos
temporales sin necesidad de soldadura. Su estructura modular se compone de una
matriz de perforaciones interconectadas internamente, lo que facilita la inserción
y conexión segura de componentes electrónicos de manera sencilla y eficiente.

Conexiones internas de un Protoboard.

La protoboard se organiza en distintas secciones que facilitan el montaje de cir-
cuitos:
l Zona verde: corresponde a los orificios que se encuentran interconectados in-
ternamente y que permiten insertar componentes tanto en el montaje físico como
en el simulador de Tinkercad.
l Riel azul: forma parte de los rieles de alimentación. Todos los orificios de este
riel están conectados entre sí y se utilizan para distribuir la alimentación positiva
(+) a los diferentes puntos del circuito.
l Riel rojo: también perteneciente a los rieles de alimentación, cuenta con orifi-
cios interconectados entre sí y se emplea para establecer la alimentación negativa
(−) o la conexión a tierra del circuito.

Componente Descripción

Resistencia

l Función: Limita el flujo de corriente en el circuito.
l Uso común: Protección de LEDs y control de
 corriente en diferentes componentes.

LED

l Función: Emite luz cuando circula corriente en la
 dirección correcta.
l Uso común: Indicadores visuales en proyectos
 electrónicos.

Relaciónalo con...

La protoboard recibe el nombre de
breadboard porque, en sus inicios,
los ingenieros utilizaban literalmente
tablas de cortar pan para montar sus
primeros circuitos. Durante las déca-
das de 1950 y 1960, estas tablas ser-
vían como base para sujetar compo-
nentes y realizar pruebas de manera
provisional.

¿Sabías qué…?

El primer LED visible fue creado en
1962 por Nick Holonyak Jr., quien
trabajaba en General Electric.

Su luz era roja y muy tenue, pero
marcó el inicio de la iluminación mo-
derna.

¡Hoy los LEDs están por todas partes,
desde pantallas hasta semáforos!

112 PENSAMIENTO COMPUTACIONAL

Progresión 5

¿Sabías qué…?

El primer condensador fue creado en
1745 y se llamó Botella de Leyden,
un curioso frasco capaz de almace-
nar carga eléctrica.

Hoy los capacitores están en cada
fuente de poder, filtro y circuito elec-
trónico.

¡Un invento del siglo XVIII que aún
sostiene la tecnología del siglo XXI!

Componente Descripción

Potenciómetro

l Función: Resistencia variable que permite ajustar el
 voltaje en un circuito.
l Uso común: Control de brillo, volumen o velocidad
 en motores.

Switch

l Función: Abre o cierra el circuito para controlar el
 flujo de corriente.
l Uso común: Encendido y apagado de dispositivos.

Diodo

l Función: Permite el paso de corriente en una sola
 dirección.
l Uso común: Protección contra polaridad inversa.

Condensador

l Función: Almacena energía eléctrica temporalmente.
l Uso común: Filtrado de señales y estabilización de

voltaje.
l Nota: También es llamado capacitor no polarizado.

Condensador
polarizado

l Función: Almacena energía eléctrica temporal-
mente. Solo que este condensador tiene una
terminal en positivo (+) y una negativa (-), y se
debe conectar respetando la polaridad. Caso con-
trario podría dañarlo.

l Uso común: Filtrado de señales y estabilización de
voltaje.

l Nota: También es llamado capacitor polarizado.

Batería 9V

l Función: Proporciona energía eléctrica al circuito,
permitiendo que los componentes del circuito
 simulado funcionen.
l Uso común: Alimentar circuitos simples con LED’s y
 resistencias.

113PENSAMIENTO COMPUTACIONAL

Progresión 5

¿Sabías qué…?

Los sensores ultrasónicos se basan
en tecnologías desarrolladas duran-
te la Segunda Guerra Mundial para
sonar y radar.

Décadas después, se miniaturizaron
hasta convertirse en los pequeños
módulos que usan robots y Arduino.

¡De tecnología militar… a ojos elec-
trónicos para tus proyectos!

Componentes de entrada

Componente Descripción

Pulsador

l Función: Controlar el flujo eléctrico de manera
 temporal.
l Uso común: Activar funciones específicas en pro-

yectos, como encender un led o iniciar una acción.

Sensor de distancia
(Ultrasónico)

l Función: Enviar pulsos ultrasónicos y calcular el
 tiempo que tarda en regresar para determinar la
 distancia.
l Uso común: En la detección de obstáculos.

Teclado
(Keypad 4x4)

l Función: Envía señales al microcontrolador de
 Arduino según la tecla presionada.
l Uso común: Sistemas de seguridad, ingreso de
 contraseñas y control de menús en proyectos
 electrónicos.

Conmutador
SPST

l Función: Abrir o cerrar el circuito eléctrico.
l Uso común: Control básico de alimentación de
 circuitos simples. Por su siglas en inglés significa
 (Single Pole Single Throw).

Sensor IR

l Función: Detectar la presencia de objetos,
medir distancia o recibir señales mediante luz
infrarroja. Esto se logra emitiendo un haz de luz IR
y analizando la reflexión o interrupción de ese haz.

l Uso común: Detección de obstáculos, control
 remoto y sistemas de seguridad.

Sensor de
temperatura

l Función: Detecta variaciones térmicas y envía datos
 al microcontrolador.
l Uso común: Control de climatización, monitoreo
 ambiental y proyectos de IoT.

Sensor de
humedad

l Función: Mide el nivel de humedad presente en la
 tierra o sustrato, detectando conductividad entre
 sus dos sondas.
l Uso común: Sistemas de riego automatizados y
 monitoreo de humedad en macetas o cultivos.

114 PENSAMIENTO COMPUTACIONAL

Progresión 5

Componente Descripción

Sensor de gas

l Función: Convertir la concentración de gas en una
 señal eléctrica que puede ser interpretada por
 microcontrolador como Arduino.
l Uso común: Sistemas de seguridad para detectar
 fugas de gas, alarmas domésticas y proyectos IoT
 para monitoreo ambiental.

Sensor PIR

l Función: Detectar movimiento mediante la varia-
 ción de radiación infrarroja emitida por objetos
 (como personas).
l Uso común: Alarmas, sistemas de iluminación auto-
 mática y seguridad.

Foto resistencia
(LDR)

l Función: Medir los niveles de iluminación.
l Uso común: Encendido automático de luces, proyec-
 tos de ahorro energético y sensores de luz.

Estudiando --
De forma individual elabora una tabla comparativa que te permita organizar, con-
trastar y comprender los temas de esta primera secuencia de la progresión 5.

1. En un documento digital crea una tabla comparativa incluyendo los siguientes
ejes:

	 l Electricidad (concepto, unidades, tipos de corriente)
	 l Electrónica (definición, componentes básicos)
	 l Protoboard (estructura y función)
	 l Tinkercad (características y utilidades)
	 l Arduino (pines, alimentación y funciones)
	 l Conexiones eléctricas (normal, jumper, cocodrilo, automática)

2. Organiza la información asegurándote que muestre: definiciones esenciales, prin-
cipales funciones, diferencias y similitudes, etc.

3. Guarda el documento con el nombre compuesto por tus iniciales seguidas de
_PC_P5_E01.

4. Hazle llegar el documento a tu profesor por el medio que acuerden.

¿Sabías qué…?

Los primeros sensores de tempe-
ratura modernos se basan en prin-
cipios descubiertos en el siglo XIX,
cuando científicos como Seebeck y
Thomson estudiaron cómo los meta-
les cambiaban con el calor.

¡Un principio físico antiguo conver-
tido en tecnología esencial para tus
proyectos!

Para saber más…

Escanea el código QR e interactúa
con la infografía Componentes de
conexión en Tinkercad.

115PENSAMIENTO COMPUTACIONAL

Progresión 5

Para saber más…

Escanea el código QR y observa el
video Mi primer sistema simulado en
Arduino.

Para saber más…

Escanea el código QR y observa el
video Estructura de código setup() y
loop() en Arduino.

Conceptos básicos
Para trabajar con Arduino es indispensable comprender las funciones fundamen-
tales que intervienen en la programación de proyectos. La estructura de un pro-
grama y el uso adecuado de sus instrucciones básicas constituyen la base del de-
sarrollo tanto en el entorno de simulación de Tinkercad como en una placa física.

Los proyectos en Arduino se organizan en dos bloques principales de código: void
setup() y void loop().

La función void setup() se ejecuta una sola vez al iniciar el programa y se utiliza
para configurar los pines y establecer parámetros iniciales, como definir si un pin
funcionará como entrada o salida. En contraste, la función void loop() contiene las
instrucciones que deben repetirse de manera continua durante el funcionamiento
del dispositivo, permitiendo que el programa esté en ejecución constante y res-
ponda a los cambios en el entorno.

Además de esta estructura básica, Arduino incorpora una serie de funciones esen-
ciales para interactuar con los distintos componentes electrónicos:

u pinMode(): establece el modo de operación de un pin, definiéndolo como en-
trada (INPUT) o salida (OUTPUT). Una configuración adecuada asegura que senso-
res, botones, LEDs u otros componentes funcionen correctamente.

u digitalWrite(): envía un valor digital a un pin configurado como salida. Puede
establecer un estado HIGH (encendido o nivel lógico alto) o LOW (apagado o nivel
lógico bajo). Es decir, al verificar el estado de un pin digital, un valor HIGH corres-
ponde lógicamente al número 1, mientras que un valor LOW equivale al número 0.

u digitalRead(): lee el estado de un pin configurado como entrada y detecta si
recibe un valor digital HIGH o LOW. Es decir, al verificar el estado de un pin digital,
un valor HIGH corresponde lógicamente al número 1, mientras que un valor LOW
equivale al número 0.

u analogWrite(): envía una señal analógica simulada mediante modulación por
ancho de pulso (PWM), lo que permite, por ejemplo, variar la intensidad de un
LED o la velocidad de un motor. Los valores que puede recibir son del 0 al 1023.

u analogRead(): lee valores analógicos provenientes de sensores, devolviendo un
número que representa la intensidad de la señal recibida. Los valores que puede
recibir son del 0 al 1023.

u delay(): pausa la ejecución del programa durante un tiempo específico expre-
sado en milisegundos. Durante esta pausa, Arduino detiene temporalmente todas
sus operaciones antes de continuar. Es útil para generar intervalos visibles entre
acciones o controlar la duración de ciertos procesos. Por ejemplo: delay(2000),
provoca que el programa se detenga por 2 segundos, y después seguirá ejecutan-
do la siguiente instrucción.

5.3 Programación en Arduino

116 PENSAMIENTO COMPUTACIONAL

Progresión 5

También es fundamental comprender el uso de los pines de Arduino, ya que cada
uno cumple funciones específicas dentro del circuito. Los pines están divididos en
dos categorías principales: salidas digitales, se encargan de controlar el encendido
y apagado de algún componente; y las salidas análogas que sirven para controlar la
intensidad como el brillo de un LED o la intensidad de un motor.

Pines de Arduino Uno R3

Conocer estas funciones facilita la correcta conexión de los componentes en la pro-
toboard y asegura un uso adecuado tanto en el simulador de Tinkercad como en el
montaje físico del proyecto.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza lo siguiente:

1. Inicia un nuevo circuito en Tinkercad para crear un sistema simulado de encen-
dido de un LED.
2. En el área de trabajo de Tinkercad, coloca una placa Arduino UNO R3.
3. Agrega un protoboard al área de trabajo.
4. Coloca un LED al protoboard, verificando la polaridad del LED. Recuerda que
ánodo es positivo y cátodo es negativo.
5. Coloca una resistencia y ajusta al valor de ella en 220Ω.
6. Realiza la conexión del ánodo del LED a un pin digital de Arduino, usa el pin 13.
7. Realiza la conexión del cátodo del LED al pin de tierra GND de Arduino.
8. Clic en el editor de código en Tinkercad y en la estructura de void setup() defi-
niremos que estamos utilizando el pin 13. Para ello escribimos el código pinMo-
de(13, OUTPUT). Con esto estamos definiendo que el pin 13 será utilizado como
un pin de salida.
9. En la estructura void loop() agregaremos primeramente las siguientes líneas de
código. digitalWrite(13,HIGH) y posteriormente la línea delay(2000).
10. En la misma estructura void loop(), agrega las siguientes líneas de código.
digitalWrite(13, LOW) y posteriormente la línea delay(2000).
11. Una vez concluida la construcción del circuito, ejecuta la simulación y verifica
que su funcionamiento sea el adecuado.
12. Exporta el circuito en formato de imagen y en un documento inserta la imagen
y el código creado en Tinkercad.
13. Coloca el link del proyecto de Tinkercad en una sección del documento.
14. Guarda el documento colocando en el nombre del archivo tus iniciales segui-
das de _PC_P5_E02.
15. Hazle llegar a tu profesor el documento por el medio que acuerden para recibir
retroalimentación.

Para saber más…

Escanea el código QR y observa el
video Función de pinMode(), digi-
talWrite(), delay() en Arduino.

Para saber más…

Escanea el código QR y observa el
video Control de salidas.

117PENSAMIENTO COMPUTACIONAL

Progresión 5

Programación básica en Arduino

La programación básica en Arduino se fundamenta en el uso de instrucciones y
estructuras derivadas del lenguaje C++, lo que permite escribir código claro, orde-
nado y eficiente para controlar diversos componentes electrónicos. Este enfoque
facilita que se apliquen habilidades de programación que no solo son útiles en
Arduino, sino también transferibles a proyectos más avanzados en otros entornos.

El código en Arduino sigue una estructura estándar compuesta por dos bloques
principales. El primero es setup(), donde se configuran los pines y parámetros inicia-
les, y el segundo es loop(), donde se ejecutan de manera repetitiva las instrucciones
mientras la placa permanece encendida. Esta disposición refleja la lógica caracterís-
tica de C++, donde cada función cumple un propósito específico y debe escribirse
siguiendo las reglas de sintaxis correspondientes, como el uso correcto de llaves,
punto y coma, mayúsculas y minúsculas.

Uno de los conceptos fundamentales en la programación con Arduino es el con-
trol de salidas, que permite enviar señales eléctricas desde la placa hacia distintos
dispositivos, como LEDs, zumbadores, motores o relés. Para ello, los pines deben
declararse como OUTPUT dentro de setup() mediante la instrucción pinMode(), y
luego activarse o desactivarse en el loop() utilizando funciones como digitalWrite().
La manera en que estas instrucciones se escriben y organizan sigue directamente la
sintaxis de C++, exigiendo precisión en cada línea del programa.

Cuando se trabaja con salidas múltiples, el propósito es coordinar acciones simul-
táneas o secuenciales entre varios componentes. Esto implica identificar correcta-
mente cada pin, establecer su función en el programa y estructurar el código en un
orden lógico que permita ejecutar patrones, tiempos y combinaciones específicas.
Gracias a la flexibilidad del lenguaje de programación basado en C++, es posible
crear secuencias complejas, diseñar patrones luminosos, controlar varios actuado-
res a la vez o gestionar sistemas más amplios como semáforos, alarmas automatiza-
das o paneles indicadores.

Área de codificación de Arduino en Tinkercad.

¿Sabías qué…?

La programación en Arduino se basa
en el enfoque modular de C++, don-
de el código se organiza en funcio-
nes que cumplen tareas específicas.
Gracias a esta estructura, puedes
dividir un proyecto en partes más
pequeñas —como controlar luces,
leer sensores o mover un motor— y
hacer que Arduino las ejecute de for-
ma ordenada.

Esta modularidad facilita entender,
depurar y ampliar tus programas, tal
como se trabaja en proyectos profe-
sionales de C++.

PENSAMIENTO COMPUTACIONAL118

Progresión 5

Dominar estas bases no solo permite comprender cómo interactúan software y
hardware, sino que también fortalece el pensamiento lógico, la resolución de pro-
blemas y la capacidad para abstraer y modelar procesos. A medida que el estudian-
te observe cómo cada instrucción escrita en C++ modifica el comportamiento físico
del circuito, adquiere una visión más profunda y completa del funcionamiento de
un sistema robótico.

Ejercitando mis conocimientos --
De manera individual y con la guía de tu profesor realiza lo siguiente:
Inicia un nuevo circuito en Tinkercad que resuelva lo para realizar un sistema simu-
lado de semáforo simple con LED.

1. Coloca una placa Arduino UNO R3, además de un protoboard en el área de
trabajo de Tinkercad.

2. Coloca tres LED al protoboard, verificando la polaridad de cada LED. Recuerda
que ánodo es positivo y cátodo es negativo. Además de cambiar el color de los
LED (amarillo, verde y rojo).

3. Coloca una resistencia de 220Ω por cada LED

4. Asigna un pin digital diferente por cada LED, por ejemplo:
	 a. LED Verde al pin 6
	 b. LED Amarillo al pin 7
	 c. LED Rojo al pin 8

5. Realiza la conexión de los cátodos de los LED al riel del GND del protoboard y
después realiza la conexión de tierra GND de Arduino.

6. Clic en el editor de código en Tinkercad y en la estructura de void setup() defi-
niremos que estamos utilizando el pin 6,7 y 8. Para ello escribiremos los códigos
para cada uno pinMode(6, OUTPUT), después pinMode(7, OUTPUT). y por último
pinMode(8, OUTPUT).

7. En la estructura void loop() agregaremos primeramente las siguientes líneas de
código digitalWrite(6,HIGH) y digitalWrite(8,LOW), para posteriormente la línea
delay(10000).

8. Después las siguientes dos líneas de códifo serían digitalWrite(7,HIGH) y digi-
talWrite(6,LOW) y posteriormente la línea delay(2000).

9. Agrega la siguientes últimas líneas de código en la misma función void loop():
digitalWrite(8,HIGH) y digitalWrite(7,LOW), posteriormente agrega la línea de-
lay(5000).

10. Una vez concluida la construcción del circuito, ejecuta la simulación y verifica
que su funcionamiento sea el adecuado.

11. Exporta el circuito en formato de imagen y en un documento inserta la imagen
y el código creado en Tinkercad.

12. Coloca el link del proyecto de Tinkercad en una sección del documento.

13. Guarda el documento colocando en el nombre del archivo tus iniciales segui-
das de _PC_P5_E03.

14. Hazle llegar a tu profesor el documento por el medio que acuerden para recibir
retroalimentación.

Para saber más…

Escanea el código QR y observa el
video Lectura en Arduino.

119PENSAMIENTO COMPUTACIONAL

Progresión 5

Conceptos clave

Microcontrolador. Pequeño circui-
to integrado que funciona como el
cerebro de un dispositivo electró-
nico. Integra procesador, memoria
y puertos de entrada y salida en un
solo chip, lo que le permite recibir
información mediante sensores, pro-
cesarla y activar actuadores según el
programa que tenga cargado.

TMP36. Sensor de temperatura ana-
lógico que convierte los cambios de
temperatura en una señal eléctrica
proporcional, permitiendo medir va-
lores del entorno de forma precisa y
sencilla.

Fotoresistencia. Componente cuya
resistencia varía según la cantidad
de luz que recibe: disminuye con
mayor iluminación y aumenta cuan-
do hay poca luz. Este comporta-
miento la hace ideal para sistemas
que responden automáticamente a
la intensidad luminosa.

En la robótica educativa, los sensores y actuadores constituyen elementos esen-
ciales que permiten al robot detectar su entorno y responder mediante acciones
físicas. Estos componentes funcionan como el vínculo entre el mundo real y el sis-
tema de control (por ejemplo, una placa Arduino), lo que hace posible desarrollar
proyectos interactivos, experimentales y autónomos.

Un sensor es un dispositivo capaz de captar magnitudes físicas, como luz, tempe-
ratura, distancia, movimiento o presión, y transformarlas en señales eléctricas que
pueden ser interpretadas por un microcontrolador. Debido a esta conversión, el
robot obtiene información del entorno y puede tomar decisiones basadas en ella.

En entornos de simulación como Tinkercad, es posible conectar un sensor ultrasó-
nico a un Arduino para medir distancias y, a partir de esa lectura, activar un motor,
encender un LED o ejecutar cualquier acción programada. Esta interacción permite
que se comprenda de manera guiada y visual cómo los datos proporcionados por
los sensores determinan el comportamiento del robot.

Sensores

Los sensores, también conocidos como transductores, son dispositivos capaces
de captar una magnitud física del entorno y convertirla en una señal eléctrica que
pueda ser interpretada por un sistema de control.

Es decir, cada sensor está diseñado para detectar un tipo de estímulo específico,
como luz, temperatura, movimiento, humedad, presión u otros fenómenos am-
bientales, proporcionando así los datos necesarios para que el sistema responda
de manera adecuada.

Tipo y uso de sensores en Arduino

u Sensor de temperatura: permite medir la temperatura del entorno y generar
una señal eléctrica proporcional a dicha variación. Uno de los modelos más utiliza-
dos es el TMP36, debido a su precisión y facilidad de uso en proyectos educativos
y de automatización. Sus aplicaciones más comunes incluyen el monitoreo de tem-
peratura en interiores, termostatos inteligentes, alarmas contra incendios, sistemas
de refrigeración en vehículos y procesos de control en agricultura automatizada.
Este sensor puede registrar valores dentro de un rango aproximado de –40 °C a
125 °C, lo que lo hace adecuado para diversos entornos.

u Sensor de luz: el modelo más utilizado es la fotoresistencia, también conocida
como LDR (Light Dependent Resistor). Este componente está fabricado con materia-
les semiconductores cuya conductividad varía según la cantidad de luz que reciben:
a mayor iluminación, menor resistencia, y a menor iluminación, mayor resistencia.

Sus aplicaciones abarcan desde la detección de presencia o ausencia de luz en
una habitación, la regulación automática de cámaras fotográficas, la recepción de
señales infrarrojas en controles remotos, hasta sistemas de iluminación automática

5.4 Sensores y actuadores

PENSAMIENTO COMPUTACIONAL120

Progresión 5

Conceptos clave

Transductor. Elemento que transfor-
ma una magnitud física (como calor
o presión) en otra forma de energía,
normalmente una señal eléctrica.
Muchos sensores funcionan gracias
a un transductor.

Rango de medición. Intervalo mí-
nimo y máximo en el que un sensor
puede realizar lecturas útiles sin per-
der precisión.

Sensor analógico. Emite señales
continuas cuyo valor varía gradual-
mente, por ejemplo un LDR, un po-
tenciómetro o el TMP36.

Sensor digital. Produce señales dis-
cretas, generalmente de tipo encen-
dido/apagado o valores específicos.
Ejemplo: sensor PIR de movimiento
o módulos ultrasónicos.

Precisión. Grado de exactitud con
el que un sensor mide una magnitud
respecto a su valor real.

Relaciónalo con...

En la Progresión 5 de Cultura Digi-
tal 3, trabajaste con Scratch usando
bloques de la categoría Sensores,
como tocando color, distancia a…
o ruido, para que tu personaje reac-
cionara al entorno digital.

En robótica ocurre algo muy pareci-
do, solo que, en lugar de un perso-
naje en la pantalla, es un robot real el
que responde al mundo físico.
Así como Scratch detecta cambios
en el juego, un sensor ultrasónico
mide distancias, una fotoresistencia
detecta luz y un DHT11 identifica
humedad o temperatura.

que encienden o apagan las luces según la intensidad luminosa del entorno. Exis-
ten diversos modelos de fotoresistencias, cada uno con un nivel de resistencia
específico que responde de manera diferente a la cantidad de luz incidente.

u Sensor de proximidad: permite detectar la presencia o distancia de objetos
cercanos, generando una señal en función de la medición realizada. El modelo más
común es el HC-SR04, un sensor ultrasónico capaz de medir distancias entre 2 y 450
cm con una precisión aproximada de 3 mm. Está conformado por dos transductores
ultrasónicos: un emisor y un receptor. Entre sus aplicaciones más frecuentes se en-
cuentran la medición de distancias, la detección de objetos, la verificación del nivel
de líquidos, el mapeo de espacios y la evitación de obstáculos en robots móviles.

u Sensor de humedad: detecta la humedad relativa del aire o de ciertos materiales
y convertirla en una señal eléctrica interpretable por un microcontrolador. El modelo
más utilizado es el DHT11, que incorpora un sensor de temperatura y un sensor de
humedad. Sus rangos de medición van de 0 °C a 50 °C en temperatura y de 20 %
a 90 % en humedad, aunque presenta algunas limitaciones en precisión. Es común
emplearlo en estaciones meteorológicas caseras, sistemas de control ambiental, au-
tomatización del hogar y proyectos de IoT. Para aplicaciones que requieren mayor
precisión, existen modelos más avanzados como el DHT21 y el DHT22.

u Sensor de sonido: permite detectar variaciones en la presión del aire pro-
ducidas por ondas sonoras y las convierte en señales eléctricas que pueden ser
procesadas por Arduino. Los modelos más comunes son el KY-037 y el KY-038.
Entre sus aplicaciones destacan el control de luces mediante sonido, la creación de
instrumentos musicales electrónicos, sistemas de seguridad y alarmas, mediciones
de ruido ambiental y proyectos interactivos.

u Sensor de gas: detecta la presencia y concentración de gases inflamables y
de humo. El modelo MQ-2 es uno de los más utilizados y funciona gracias a un
material interno sensible a los gases, cuya conductividad eléctrica cambia al entrar
en contacto con ellos, esta variación puede ser medida por el sensor y procesada
por Arduino para activar alarmas o sistemas de ventilación.

u Sensor de vibración: actúa como un interruptor sensible a impactos o mo-
vimientos bruscos, se activa al detectar vibraciones y se desactiva al mantener
reposo. El modelo SW-18015P es uno de los más empleados y se utiliza en dis-
positivos de juego, sistemas de alarma, juguetes electrónicos, electrodomésticos
y aplicaciones automotrices.

u Sensor infrarrojo (IR): mide la radiación infrarroja emitida por los objetos para
detectar movimiento o presencia, se utiliza en sistemas de seguridad, iluminación
automática y domótica para identificar personas o animales. Se clasifica como un
sensor “pasivo” porque no emite energía propia; únicamente recibe la radiación
infrarroja del entorno y la interpreta para generar una señal.

Conocer el funcionamiento y la correcta aplicación de los sensores es esencial para
que un robot pueda interpretar su entorno y responder adecuadamente, los senso-
res proporcionan los datos que el microcontrolador necesita para ejecutar acciones
precisas, por lo que dominar su uso permite diseñar proyectos de robótica más
seguros, confiables y funcionales.

PENSAMIENTO COMPUTACIONAL 121

Progresión 5

Relaciónalo con...

En Tinkercad también es posible
trabajar con librerías adicionales
para sensores avanzados, igual que
en Arduino físico. Para hacerlo, bas-
ta con escribir manualmente en el
código las líneas que incluyen cada
biblioteca, por ejemplo:
#include <DHT.h> o #include
<Wire.h>.

Tipo y uso de sensores en Arduino

Sensor Funciones comunes Imagen

Ultrasonico
(HC-SR04)

Detección de objetos, evitar
obstáculos, medir niveles.

Fotoresistencia
(LDR)

Control de iluminación, alarmas
luminosas, medición de brillo.

Temperatura
(TMP36)

Monitoreo térmico, termostatos,
control ambiental.

Humedad y temperatura
(DHT11)

Estaciones meteorológicas, sistemas
automatizados, IoT.

Sensor de sonido Alarmas, proyectos interactivos,
detección de ruido.

Sensor infrarrojo
(IR)

Seguridad, iluminación automática,
domótica.

Sensor de gas
(MQ-2)

Alarmas de gas, sistemas de
ventilación, monitoreo ambiental.

Sensor de vibración
(SW-18015P)

Alarmas, juguetes electrónicos,
dispositivos interactivos.

Por lo general, al desarrollar proyectos que incorporan sensores, no se requiere el
uso de bibliotecas específicas para su funcionamiento. Sin embargo, existen cier-
tos dispositivos, como los sensores de temperatura y humedad DHT11 o DHT12,
que sí demandan la utilización de la biblioteca DHT.h. De manera similar, algunos
sensores más especializados, como los acelerómetros y giroscopios, requieren las
bibliotecas Wire.h y MPU6050.h, respectivamente. Estas bibliotecas deben incluir-
se en las primeras líneas del código del proyecto, de forma análoga a como se
procede en el lenguaje C++.

PENSAMIENTO COMPUTACIONAL122

Progresión 5

Para saber más…

Escanea el código QR y observa el
video Sensores en Arduino (ultrasó-
nico).

Para saber más…

Escanea el código QR y observa el
video Sensores en Arduino (proximi-
dad, luz, humedad).

Ejercitando mis conocimientos --
De manera individual y siguiendo las indicaciones de tu profesor, realiza lo siguiente:
Crea un nuevo circuito en Tinkercad para simular un sistema que encienda un LED
automáticamente cuando el entorno se oscurezca.

1. Coloca una placa Arduino UNO R3 y un protoboard en el área de trabajo de
Tinkercad.

2. Inserta un LED en el protoboard y verifica su polaridad: recuerda que el ánodo es
positivo y el cátodo es negativo. Cambia el color del LED a tu preferencia.

3. Añade una resistencia de 220 Ω al LED para limitar la corriente y evitar daños al
componente.

4. Coloca una fotoresistencia (LDR) en el protoboard. Este sensor permitirá detectar
los niveles de luz del entorno.

5. Conecta la LDR formando un divisor de voltaje:
	 a. Conecta uno de sus terminales a 5V.
	 b. Conecta el otro terminal a una resistencia de 10 kΩ hacia GND.
	 c. Desde el punto donde se unen la LDR y la resistencia, lleva un cable hacia
	 el pin A0 de Arduino (lectura analógica).

6. Conecta el LED a un pin digital de Arduino, por ejemplo:
	 a. LED → pin 7
	 b. Cátodo del LED → riel GND del protoboard
	 c. Conecta también el GND de Arduino al riel de tierra del protoboard.

7. Abre el editor de código en Tinkercad. En la función void setup(), configura el pin
7 como salida y declara el uso del pin analógico A0:
	 a. pinMode(7, OUTPUT);

8. En la función void loop(), escribe las líneas de código necesarias para:
	 a. Leer el valor del sensor con analogRead(A0);
	 b. Encender el LED cuando el valor sea bajo (oscuridad)
	 c. Apagarlo cuando el valor sea alto (luz)

9. Ejecuta la simulación y ajusta la iluminación del entorno con las herramientas de
Tinkercad para verificar que el LED se enciende cuando hay oscuridad y se apaga
cuando hay luz.

10. Una vez validado el funcionamiento, exporta en formato de imagen y crea un
documento donde insertes la imagen del circuito y el código utilizado.

11. Coloca el link del proyecto de Tinkercad en una sección del documento.

12. Guarda el documento nombrándolo con tus iniciales seguidas de _PC_P5_E04.

13. Entrega el documento a tu profesor por el medio que acuerden para recibir
retroalimentación.

Actuadores

Un actuador es un dispositivo que recibe una señal de control generalmente eléc-
trica y la transforma en una acción física, ya sea movimiento, sonido, luz o vibración.
Los actuadores pueden clasificarse según la fuente de energía o el principio físico
que emplean:

PENSAMIENTO COMPUTACIONAL 123

Progresión 5

Para saber más…

Escanea el código QR y observa el
video Actuadores en Arduino.

Para saber más…

Escanea el código QR y observa el
video Servomotores en Arduino.

u Eléctricos: incluyen motores de corriente directa (DC), servomotores, relés y dis-
positivos vibradores.

u Neumáticos: funcionan mediante aire comprimido para generar movimiento.

u Hidráulicos: utilizan líquidos a presión para producir fuerza o desplazamiento.
Los actuadores también pueden clasificarse según la función que desempeñan den-
tro de un sistema robótico:

u Motores DC: convierten la energía eléctrica en un movimiento rotacional conti-
nuo, su funcionamiento se basa en la interacción entre un campo magnético y una
corriente eléctrica, lo que genera el giro constante del eje.

Son utilizados principalmente para desplazar ruedas, accionar mecanismos sencillos
o producir movimientos repetitivos sin necesidad de un control preciso de posición,
comúnmente usados en robots móviles y sistemas que requieren desplazamiento
sostenido.

u Servomotores: están diseñados para controlar con gran precisión la posición
angular de un eje a diferencia de los motores DC, incorporan un sistema de retro-
alimentación que permite conocer y corregir su posición en todo momento. Esto
los hace esenciales para brazos robóticos, mecanismos articulados y sistemas de
dirección, donde se requiere estabilidad, suavidad y exactitud en el movimiento. Su
capacidad para mantener una posición fija ante pequeñas perturbaciones es una de
sus principales ventajas.

u Relés: funcionan como interruptores controlados eléctricamente que permiten
activar o desactivar circuitos de mayor potencia mediante señales de bajo voltaje
provenientes de un microcontrolador, como Arduino. Operan a través de un elec-
troimán que, al recibir corriente, acciona un contacto interno y modifica el estado
del circuito externo, gracias a este mecanismo, los relés proporcionan aislamiento
eléctrico y protección para los componentes sensibles, y son ideales para controlar
lámparas, motores grandes, electrodomésticos u otros dispositivos que no pueden
conectarse directamente al sistema de control.

u Bombas, válvulas y actuadores lineales: estos dispositivos transforman la ener-
gía eléctrica en movimientos específicos, como empujar, tirar, abrir o cerrar meca-
nismos. Las bombas permiten desplazar líquidos o gases y se utilizan en sistemas
de riego o proyectos hidráulicos; las válvulas regulan el flujo de fluidos en tuberías,
mientras que los actuadores lineales convierten la energía eléctrica en un despla-
zamiento recto, útil en sistemas que requieren levantar o posicionar objetos con
precisión. Estos componentes son comunes en proyectos avanzados o aplicaciones
industriales.

u Indicadores luminosos o sonoros: los indicadores como LED y zumbadores
cumplen la función de comunicar información al usuario mediante luz o sonido. Aun-
que no generan movimiento físico, resultan esenciales para señalizar estados, emitir
alertas o indicar procesos en curso. Los LED pueden encenderse, apagarse o variar
su intensidad, mientras que los zumbadores producen señales acústicas útiles para
advertencias y notificaciones. Su sencillez y bajo consumo energético los hace am-
pliamente utilizados en proyectos educativos e interactivos.

PENSAMIENTO COMPUTACIONAL124

Progresión 5

Recurso digital

Escanea el código QR con las ins-
trucciones detalladas para un siste-
ma de ventilador automatizado con
sensor de temperatura.

En el ámbito de la robótica educativa, un ejemplo representativo es el uso de un
servomotor SG90 controlado mediante Arduino para mover un brazo robótico,
o la activación de un LED o un zumbador cuando un sensor de distancia detecta
un obstáculo.

Tipo y uso de actuadores en Arduino

Sensor Funciones comunes Imagen

DC Motor
Produce movimiento rotacional continuo. Se

usa en robot móviles, ventiladores, mecanismos
simples y ruedas motrices.

Servomotor
(SG90)

Controla la posición angular con alta precisión.
Ideal para brazos robóticos, mecanismos

articulados, dirección de robots y sistemas que
requieren movimientos exactos.

Realy

Funciona como interruptor de alta potencia con-
trolado por una señal de bajo voltaje. Se utiliza

para encender lámparas, activar motores grandes,
controlar electrodomésticos y aislar circuitos.

Zumbador
piezoeléctrico

Produce sonidos o alertas acústicas. Se usa en
alarmas, notificaciones, sistemas interactivos y

señales audibles.

LED / Indicador
luminoso

Emite luz para señalización de estados,
advertencias, indicadores visuales o

retroalimentación de procesos.

En la mayoría de los proyectos con Arduino, los actuadores básicos no requieren
bibliotecas adicionales para su funcionamiento componentes como LEDs, zumba-
dores o relés pueden controlarse directamente mediante instrucciones estándar,
como digitalWrite() o analogWrite(), sin necesidad de configuraciones especiales.

Ejercitando mis conocimientos --
De manera individual y siguiendo las indicaciones de tu profesor, realiza lo siguiente:

1. Creen un nuevo circuito en Tinkercad.

2. Coloca una placa Arduino UNO R3 y un protoboard en el área de trabajo de
Tinkercad.

3. Escanea el código QR del lado izquierdo para descargar el archivo con las indi-
caciones detalladas.

4. Exporta una imagen del circuito y elabora un documento donde insertes la ima-
gen y el código utilizado.

5. Coloca el link del proyecto de Tinkercad en una sección del documento.

6. Guarda el documento con el nombre correspondiente a tus iniciales seguido
de _PC_P5_E05.

7. Envía tu archivo al profesor mediante el medio que hayan acordado para recibir
retroalimentación.

PENSAMIENTO COMPUTACIONAL 125

Progresión 5

Para saber más…

Escanea el código QR y observa el
video Sistema integral básico.

Integración de sensores y actuadores

La integración de sensores y actuadores constituye uno de los aspectos esenciales
en el desarrollo de sistemas robóticos, ya que permite crear dispositivos capaces
de percibir su entorno y responder mediante acciones físicas. Un sensor propor-
ciona información del mundo real, mientras que un actuador transforma esa infor-
mación en una acción concreta, como mover un motor, encender un LED o activar
un mecanismo.

Esta interacción convierte un circuito sencillo en un sistema autónomo capaz de
ejecutar tareas de manera automática. En un proyecto robótico, la placa Arduino
actúa como el elemento central que recibe las lecturas del sensor, procesa esos
datos mediante el programa cargado y envía órdenes precisas al actuador corres-
pondiente. De esta forma, la lógica del programa se convierte en el puente entre
el análisis del entorno y la respuesta física del sistema.

En Tinkercad es simular cómo cambian las lecturas de un sensor en tiempo real y
verificar de inmediato la reacción del actuador asociado, ya sea el encendido de un
LED, la activación de un motor o la emisión de un sonido. Este proceso facilita la
comprensión de la relación entre hardware y software. La simulación de Tinkercad
también permite experimentar con sistemas como iluminación automática, ventila-
ción inteligente, alarmas sonoras, medidores ambientales o mecanismos de movi-
miento básico, identificando cómo las variaciones en las condiciones del entorno
influyen en el comportamiento del sistema.

Proyecto de robótica con integración de sensores y actuadores.

La integración de sensores y actuadores no solo fortalece las habilidades técnicas
del estudiante, sino que también fomenta el razonamiento lógico, la creatividad y
la resolución de problemas. Al comprender cómo interactúan estos componentes
dentro de un circuito y cómo el código determina su comportamiento, el desa-
rrollador desarrolla una visión más completa del funcionamiento de la robótica y
se prepara para enfrentar proyectos más avanzados tanto en simulación como en
hardware físico.

PENSAMIENTO COMPUTACIONAL126

Progresión 5

Concretando mis conocimientos
Reúnete con tres compañeros más y de manera colaborativa realicen un proyecto
en Tinkercad integrando sensores y actuadores para crear un sistema de alarma
inteligente.

1. Creen un nuevo circuito en Tinkercad.

2. Coloca una placa Arduino UNO R3 y un protoboard en el área de trabajo de
Tinkercad.

3. Escanea el código QR del lado derecho para descargar el archivo con las indi-
caciones detalladas.

4. Ejecuta la simulación y ajusta la temperatura desde el panel del sensor para
verificar que el ventilador se active cuando la temperatura aumenta y se desactive
cuando baja.

5. Exporta una imagen del circuito y elabora un documento donde insertes la ima-
gen y el código utilizado.

6. Coloca el link del proyecto de Tinkercad en una sección del documento.

7. Guarda el documento con el nombre correspondiente número de equipo segui-
do por _PC_P5_CMC.

8. Envíen su archivo al profesor mediante el medio que hayan acordado para reci-
bir evaluación.

Instrumento de evaluación
Revisa la siguiente lista de cotejo para que conozcas los criterios con los que tu
profesor evaluará tu programa en Tinkercad.

Indicador Si No Puntos

El circuito está correctamente armado en
Tinkercad (Arduino, protoboard, sensor y
actuadores bien colocados).).

2

Las conexiones eléctricas son correctas
(polaridad, resistencias, GND/5V, entrada del
sensor)..

2

El código configura correctamente los pines
en setup() y realiza la lectura del sensor.

2

La alarma responde adecuadamente a la con-
dición definida (se activa y desactiva según el
sensor).

2

El documento entregado contiene la imagen
del circuito, el código completo y una breve
explicación del funcionamiento.

2

Recurso digital

Escanea el código QR con las instruc-
ciones detalladas para armar el siste-
ma de alarma inteligente.

Demostrando mi aprendizaje

Para demostrar tu aprendizaje con-
ceptual referente a los temas abor-
dados en esta progresión, realiza la
actividad interactiva, ingresa a ella
escaneando el código QR.

PENSAMIENTO COMPUTACIONAL 127

Progresión 5

Valorando mi aprendizaje
La evaluación es un proceso continuo de formación, útil para recabar evidencias
sobre el logro de los aprendizajes, con oportunidad de retroalimentación y mejora
de los resultados.

En este apartado se presentan algunas actividades e instrumentos, que te guían en
la valoración de los aprendizajes que adquiriste progresivamente en las secuencias
didácticas anteriores. Responde honestamente a cada una de ellas.

Reflexionando lo que aprendí
Contesta las siguientes preguntas y reflexiona sobre tu desempeño en esta última
progresión..

l Describe una situación de tu vida académica donde podrías aplicar lo apren-
dido en robótica educativa para organizarte, resolver un problema o automatizar
una tarea.

l Piensa en un proyecto de robótica que realizaste. ¿Qué fue lo más retador al
integrar sensores y actuadores y cómo resolviste ese reto?

l ¿Cómo te ayudó trabajar con Arduino a entender mejor cómo funcionan los
dispositivos electrónicos en la vida real? Explica con un ejemplo.

l Después de estudiar robótica educativa, ¿qué consideras que necesitas mejo-
rar o seguir practicando y por qué crees que esto será importante para tu futuro
académico o profesional?

Actividad alternativa
Resuelve para reforzar tu aprendizaje e incrementar tu evaluación.

Indicaciones:

1. Observa tu entorno durante 1 o 2 días. Pon atención en cualquier elemento
donde intervengan robots, automatizaciones, sensores, actuadores o dispositivos
inteligentes.

2. Investiga y recopila un dato curioso. Puedes investigar mediante observación,
Internet, entrevistas o aparatos reales.

3. Crea un video donde lo expliques a profundidad. Incluye los siguientes datos:
cómo funciona, sensores involucrados, problema que soluciona y por qué te llamó
la atención.

4. Aplica un diseño creativo y explica con claridad y orden.

5. Entrega el video a tu profesor para que evalúe.

PENSAMIENTO COMPUTACIONAL128

Progresión 5

Autoevaluación
La autoevaluación es un mecanismo de autocontrol que te ayuda a regular tu aprendizaje. Marca con una √ la columna que
corresponda a tu nivel de dominio en los aspectos de aprendizaje en cada meta.

Metas Criterios
Nivel de dominio

Sí lo
logro

En
proceso

Aún no
lo logro

Identifica la importancia de la
robótica educativa como herramien-
ta para comprender la interacción
entre hardware y software.

Explico qué es la robótica educativa y su utilidad en el
aprendizaje tecnológico.

Reconozco la relación entre hardware y software en proyectos
de robótica.

Describo la forma en que Tinkercad y Arduino representan la
interacción hardware–software.

Configura sistemas básicos de
automatización en un entorno
gráfico controlando las salidas.

Configuro circuitos básicos en Tinkercad con componentes
electrónicos.

Conecto correctamente salidas (actuadores) como LED, servo
o buzzer en Arduino.

Utilizo el simulador para verificar que las salidas reaccionen
según el diseño.

Comprendo el flujo de energía y señal entre la placa Arduino
y los actuadores.

Ajusto parámetros (ángulo de servo, intensidad, frecuencia)
cuando el circuito lo requiere.

Codifica programas con estructu-
ras de control, funciones básicas,
bucles, sensores y actuadores en
simulaciones.

Escribo código Arduino que controla salidas mediante
digitalWrite, analogWrite o funciones específicas.

Implemento estructuras de control para responder a condiciones
del entorno.

Programo sensores básicos (LDR, ultrasonido, botón,
potenciómetro) e interpreta sus lecturas.

Integro sensores y actuadores en una simulación que responda
a entradas reales.

Depuro y corrijo errores en el código hasta lograr una simulación
funcional.

Lo mejor que aprendí fue:

Lo que necesito reforzar es:

Calificación que doy a mi
desempeño:

Excelente Satisfactorio En desarrollo Inicial

PENSAMIENTO COMPUTACIONAL 129

Progresión 5

Coevaluación
Evalúa el desempeño general de tu equipo de trabajo durante el desarrollo de las actividades de aprendizaje colaborativas.
Coloca el valor correspondiente en la columna Evaluación y suma para conocer el resultado del trabajo por equipo.

Buen trabajo (3) Algo nos faltó (2) Debemos mejorar (1) Evaluación

Organizamos el trabajo estipulando
tareas, prioridades y plazos.

Se organizó el trabajo, pero no se esti-
pularon tareas, prioridades o el plazo de
entrega final.

No hubo organización para realizar
nuestros trabajos.

Cumplimos cada uno con las tareas
asignadas en el plazo estipulado.

Casi todos los miembros del equipo cum-
plimos con las tareas asignadas y el plazo
estipulado; teniendo que resolver lo que a
otros les fue encomendado.

Un solo miembro del equipo realizó
todos los productos.

Todos participamos activamente en
la elaboración de los productos.

Casi todos los miembros del equipo parti-
cipamos activamente en la elaboración de
los productos.

No hubo participación de los miem-
bros del equipo en la elaboración
de los productos.

La calidad de los productos que
elaboramos fue la adecuada para su
entrega.

La calidad de los productos que elabora-
mos fue en su mayoría la adecuada para
su entrega.

No se cumplió con la calidad
adecuada de los productos para su
entrega.

Total ___ de 12

PENSAMIENTO COMPUTACIONAL130

Bibliografía

Cairó, O. (2005). Metodología de la programación. México: Alfaomega.

Cairó, O. (2007). Metodología de la programación para Bachillerato. Alfaomega. México.

Celi, P. (2023). Fundamentos de programación basados en PSeInt. Quito: Doxa Edition.

De Anda, C., Santiago, R., & Romero, E. (2024). Tecnologías de la información 3:
Laboratorio de cómputo III (2.ª ed.). Dirección General de Escuelas Preparatorias-UAS.
Ediciones GYROS, S. A. de C. V. México.

De Anda, C., Santiago, R., & Romero, E. (2020). Introducción a la programación:
Laboratorio de cómputo IV (1.ª ed.). Dirección General de Escuelas Preparatorias-UAS.
Ediciones GYROS, S. A. de C. V. México.

Deitel P. & Deitel H. (2014). C++ Cómo programar. (9.ª ed.). Pearson Educación, México.

Díaz-Brito, L., & Rodríguez-Guzmán, A. (2018). Pseudocódigo y programación estructu-
rada para secundaria y bachillerato (2.ª ed.). Editorial Limusa. México.

García-Molina, J., & Pérez-Campos, F. (2020). Introducción al pensamiento computa-
cional: Algoritmos, pseudocódigo y resolución de problemas. Ediciones Alfaomega.
México.

Joyanes, L. (2008) Fundamentos de la programación. España: McGraw-Hill

SEP (2023a). Progresiones de aprendizaje del recurso sociocognitivo Cultura digital.
SEMS. Secretaría de Educación Pública, Subsecretaría de Educación Media Superior.
Segunda edición. Consultado el 18 de diciembre del año 2023 en: https://educacion-
mediasuperior.sep.gob.mx/work/models/sems/Resource/13634/1/images/Progresio-
nes%20de%20aprendizaje%20-%20Cultura%20Digital(1).pdf

Shamieh, C. (2015). Electronics for Dummies. United States of America: John Wiley &
Sons, Inc.

Stroustrup, B. (2014). Programming: Principles and Practice Using C++. Crawfordsville,
Florida: Addison-Wesley.

UAS (2022). Modelo educativo Universidad Autónoma de Sinaloa.

UAS (2024). Currículo del Bachillerato DGEP-UAS. Culiacán Rosales, Sinaloa.

Fuentes digitales

https://es.slideshare.net/slideshow/tinkercad-practicas-y-soluciones/250056857

https://www.tinkercad.com/blog/official-guide-to-tinkercad-circuits

